
PJSUA2 Documentation
Release 1.0-alpha

Sauw Ming Liong, Benny Prijono

February 27, 2014

CONTENTS

1 Introduction 3
1.1 Getting Started with PJSIP . 3
1.2 PJSIP Info and Documentation . 3

2 Development Guidelines and Considerations 5
2.1 Development Guidelines . 5
2.2 Platform Consideration . 5
2.3 Which API to Use . 8
2.4 Network and Infrastructure Considerations . 9
2.5 Sound Device . 10

3 PJSUA2-High Level API 11
3.1 PJSUA2 Main Classes . 11
3.2 General Concepts . 12
3.3 Building PJSUA2 . 13
3.4 Building Python and Java SWIG Modules . 13
3.5 Using in C++ Application . 14
3.6 Using in Python Application . 15
3.7 Using in Java Application . 16

4 Endpoint 19
4.1 Instantiating the Endpoint . 19
4.2 Creating the Library . 19
4.3 Initializing the Library and Configuring the Settings . 20
4.4 Creating One or More Transports . 20
4.5 Starting the Library . 20
4.6 Shutting Down the Library . 21
4.7 Class Reference . 21

5 Accounts 41
5.1 Subclassing the Account class . 41
5.2 Creating Userless Accounts . 42
5.3 Creating Account . 42
5.4 Account Configurations . 43
5.5 Account Operations . 43
5.6 Class Reference . 43

6 Media 69
6.1 The Audio Conference Bridge . 69
6.2 Audio Device Management . 72
6.3 Class Reference . 72

i

7 Calls 91
7.1 Subclassing the Call Class . 91
7.2 Making Outgoing Calls . 91
7.3 Receiving Incoming Calls . 92
7.4 Call Properties . 92
7.5 Call Disconnection . 92
7.6 Working with Call’s Audio Media . 92
7.7 Call Operations . 93
7.8 Instant Messaging(IM) . 93
7.9 Class Reference . 93

8 Buddy (Presence) 123
8.1 Subclassing the Buddy class . 123
8.2 Subscribing to Buddy’s Presence Status . 123
8.3 Responding to Presence Subscription Request . 124
8.4 Changing Account’s Presence Status . 124
8.5 Instant Messaging(IM) . 124
8.6 Class Reference . 124

9 PJSUA2 Sample Applications 129
9.1 Sample Apps . 129
9.2 Miscellaneous . 129

10 Media Quality 131
10.1 Audio Quality . 131
10.2 Video Quality . 131

11 Network Problems 133
11.1 IP Address Change . 133
11.2 Blocked/Filtered Network . 133

12 PJSUA2 API Reference Manuals 135
12.1 endpoint.hpp . 135
12.2 account.hpp . 158
12.3 media.hpp . 182
12.4 call.hpp . 203
12.5 presence.hpp . 230
12.6 persistent.hpp . 234
12.7 json.hpp . 244
12.8 siptypes.hpp . 246
12.9 types.hpp . 259
12.10 config.hpp . 262

13 Appendix: Generating This Documentation 263
13.1 Requirements . 263
13.2 Rendering The Documentation . 263
13.3 How to Use Integrate Book with Doxygen . 263

14 Indices and tables 267

ii

PJSUA2 Documentation, Release 1.0-alpha

Contents:

CONTENTS 1

PJSUA2 Documentation, Release 1.0-alpha

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This documentation is intended for developers looking to develop Session Initiation Protocol (SIP) based client appli-
cation. Some knowledge on SIP is definitely required, and of course some programming experience. Prior knowledge
of PJSUA C API is not needed, although it will probably help.

PJSIP libraries provide multi-level APIs to do SIP calls, presence, and instant messaging, as well as handling media
and NAT traversal. PJSUA2 API is the highest API from PJSIP, on top of PJSUA-LIB API. PJSUA-LIB API itself
is a library that unifies SIP, audio/video media, NAT traversal, and client media application best practices into a high
level, integrated, and easy to use API. The next chapter will guide you on selecting which API level to use depending
on your requirements.

This documentation can be viewed online, or alternatively you can download the PDF format for offline viewing.

1.1 Getting Started with PJSIP

Check PJSIP Datasheet to make sure that it has the features that you require.

To start using PJSIP, the Getting Started Guide contains instructions to acquire and build PJSIP on various platforms
that we support.

1.2 PJSIP Info and Documentation

To get other relevant info and documentations about PJSIP, you can visit:

• PJSIP General Wiki is the home for all documentation

• PJSIP FAQ

• PJSIP Reference Manual - please see Reference Manual section

3

http://www.pjsip.org/docs/book-latest/html/index.html
http://www.pjsip.org/docs/book-latest/PJSUA2Doc.pdf
http://trac.pjsip.org/repos/wiki/PJSIP-Datasheet
http://trac.pjsip.org/repos/wiki/Getting-Started
http://trac.pjsip.org/repos/wiki
http://trac.pjsip.org/repos/wiki/FAQ
http://trac.pjsip.org/repos/wiki

PJSUA2 Documentation, Release 1.0-alpha

4 Chapter 1. Introduction

CHAPTER

TWO

DEVELOPMENT GUIDELINES AND CONSIDERATIONS

2.1 Development Guidelines

2.1.1 Preparation

• Essential: Familiarise yourself with SIP. You don’t need to be an expert, but SIP knowledge is essential.

• Check out our features in Datasheet. Other features may be provided by our community.

• All PJSIP documentation is indexed in our Trac site.

2.1.2 Development

• Essential: Follow the Getting Started instructions to build PJSIP for your platform.

• Essential: Interactive debugging capability is essential during development

• Start with default settings in <pj/config_site_sample.h>. The default settings should be good to get you started.
You can always optimize later after things are running okay.

2.1.3 Coding Style

Essential: set your editor to use 8 characters tab size in order to see PJSIP source correctly.

Detailed below is the PJSIP coding style. You don’t need to follow it unless you are submitting patches to PJSIP:

• Indentation uses tabs and spaces. Tab size is 8 characters, indentation 4.

• All public API in header file must be documented in Doxygen format.

• Apart from that, we mostly just use K & R style, which is the only correct style anyway.

2.1.4 Deployment

• Essential: Logging is essential when troubleshooting any problems. The application MUST be equipped with
logging capability. Enable PJSIP log at level 5.

2.2 Platform Consideration

Platform selection is usually driven by business motives. The selection will affect all aspects of development, and here
we will cover considerations for each platforms that we support.

5

http://trac.pjsip.org/repos/wiki/PJSIP-Datasheet
http://trac.pjsip.org/repos/wiki/Projects_Using_PJSIP
http://trac.pjsip.org/repos
http://trac.pjsip.org/repos/wiki/Getting-Started
http://en.wikipedia.org/wiki/1_true_brace_style#K.26R_style

PJSUA2 Documentation, Release 1.0-alpha

2.2.1 Windows Desktop

Windows is supported from Windows 2000 up to the recent Windows 8 and beyond. All features are expected to work.
64bit support was added recently. Development is based on Visual Studio. Considerations for this platform include:

1. Because Visual Studio file format keeps changing on every release, we decided to support the lowest denomina-
tor, namely Visual Studio 2005. Unfortunately the project upgrade procedure fails on Visual Studio 2010, and
we don’t have any solution for that. VS 2008 and VS 2012 onwards should work.

2.2.2 MacOS X

All features are expected to work. Considerations include:

1. Development with XCode is currently not supported. This is not to say that you cannot use XCode, but PJSIP
only provides basic Makefiles and if you want to use XCode you’d need to arrange the project yourself.

2. Mac systems typically provides very good sound device, so we don’t expect any problems with audio on Mac.

2.2.3 Linux Desktop

All features are expected to work. Linux considerations:

1. Use our native ALSA backend instead of PortAudio because ALSA has less jitter than OSS and our backend is
more lightweight than PortAudio

2.2.4 iOS for iPhone, iPad, and iPod Touch

All features except video are expected to work (video is coming soon!). Considerations for iOS:

1. You need to use TCP transport for SIP for the background feature to work

2. IP change (for example when user is changing access point) is a feature frequently asked by developers and you
can find the documentation here: http://trac.pjsip.org/repos/wiki/IPAddressChange

3. There are some specific issues for iOS 7 and beyond, please see http://trac.pjsip.org/repos/ticket/1697

4. If SSL is needed, you need to compile OpenSSL for iOS

2.2.5 Android

All features except video are expected to work (video is coming soon!). Considerations for Android:

1. You can only use PJSUA2 Java binding for this target.

2. It has been reported that Android audio device is not so good in general, so some audio tuning may be needed.
Echo cancellation also needs to be checked.

3. This is also a new platform for us.

2.2.6 Symbian

Symbian has been supported for a long time. In general all features (excluding video) are expected to work, but we’re
not going to do Symbian specific development anymore. Other considerations for Symbian:

6 Chapter 2. Development Guidelines and Considerations

http://trac.pjsip.org/repos/wiki/IPAddressChange
http://trac.pjsip.org/repos/ticket/1697

PJSUA2 Documentation, Release 1.0-alpha

1. The MDA audio is not very good (it has high latency), so normally you’d want to use Audio Proxy Server
(APS) or VoIP Audio Service (VAS) for the audio device, which we support. Using these audio backends will
also provide us with high quality echo cancellation as well as low bitrate codecs such as AMR-NB, G.729, and
iLBC. But VAS and APS requires purchase of Nokia development certificate to sign the app, and also since APS
and VAS only run on specific device type, you need to package the app carefully and manage the deployment to
cover various device types.

2.2.7 BlackBerry 10

BlackBerry 10 (BB10) is supported since PJSIP version 2.2. As this is a relatively new platform for us, we are currently
listening to developer’s feedback regarding the port. But so far it seems to be working well. Some considerations for
BB10 platform include:

1. IP change (for example when user is changing access point) is a feature frequently asked by developers and you
can find the documentation here: http://trac.pjsip.org/repos/wiki/IPAddressChange

2.2.8 Windows Mobile

This is the old Windows Mobile platform that is based on WinCE. This platform has been supported for a long time.
We expect all features except video to work, but there may be some errors every now and then because this target is
not actively maintained. No new development will be done for this platform.

Other considerations for Windows Mobile platform are:

1. The quality of audio device on WM varies a lot, and this affects audio latency. Audio latency could go as high
as hundreds of millisecond on bad hardware.

2. Echo cancellation could be a problem. We can only use basic echo suppressor due to hardware limitation, and
combined with bad quality of audio device, it may cause ineffective echo cancellation. This could be mitigated
by setting the audio level to low.

2.2.9 Windows Phone 8

Windows Phone 8 (WP8) support is being added and is still under development on projects/winphone branch. Specific
considerations for this platform are:

1. WP8 governs specific interaction with WP8 GUI and framework that needs to be followed by application in order
to make VoIP call work seamlessly on the device. Some lightweight process will be created by WP8 framework
in order for background call to work and PJSIP needs to put its background processing in this process’ context.
Currently this feature is under development.

2.2.10 Embedded Linux

In general embedded Linux support is similar to Linux and we find no problems with it. We found some specific
considerations for embedded Linux as follows:

1. The performance of the audio device is probably the one with most issues, as some development boards does
not have a decent sound device. Typically there is high audio jitter (or burst) and latency. This will affect end
to end audio latency and also the performance of the echo canceller. Also we found that ALSA generally works
better than OSS, so if you can have ALSA up and running that will be better. Use our native ALSA backend
audio device instead of PortAudio since it is simpler and lighter.

2.2. Platform Consideration 7

http://trac.pjsip.org/repos/wiki/IPAddressChange

PJSUA2 Documentation, Release 1.0-alpha

2.2.11 QNX or Other Posix Embedded OS

This is not part of our officially supported OS platforms, but users have run PJSIP on QNX and BlackBerry 10 is based
on QNX too. Since QNX provides Posix API, and maybe by using the settings found in the configure-bb10 script,
PJSIP should be able to run on it, but you need to develop PJMEDIA sound device wrapper for your audio device.
Other than this, we don’t have enough experience to comment on the platform.

2.2.12 Other Unix Desktop OSes

Community members, including myself, have occasionally run PJSIP on other Unix OSes such as Solaris, FreeBSD,
and OpenBSD. We expect PJSIP to run on these platforms (maybe with a little kick).

2.2.13 Porting to Other Embedded OS

It is possible to port PJSIP to other embedded OS or even directly to device without OS and people have done so. In
general, the closer resemblance the new OS to existing supported OS, the easier the porting job will be. The good
thing is, PJSIP has been made to be very very portable, and system dependent features are localized in PJLIB and
PJMEDIA audio device, so the effort is more quantifiable. Once you are able to successfully run pjlib-test, you are
more or less there with your porting effort. Other than that, if you really want to port PJSIP to new platform, you
probably already know what you’re doing.

2.3 Which API to Use

2.3.1 PJSIP, PJMEDIA, and PJNATH Level

At the lowest level we have the individual PJSIP C libraries, which consist of PJSIP, PJMEDIA, and PJNATH, with
PJLIB-UTIL and PJLIB as support libraries. This level provides the most flexibility, but it’s also the hardest to use.
The only reason you’d want to use this level is if:

1. You only need the individual library (say, PJNATH)

2. You need to be very very tight in footprint (say when things need to be measured in Kilobytes instead of
Megabytes)

3. You are not developing a SIP client

Use the corresponding PJSIP, PJMEDIA, PJNATH manuals from http://trac.pjsip.org/repos/ for information on how to
use the libraries. If you use PJSIP, the PJSIP Developer’s Guide (PDF) from that page provides in-depth information
about PJSIP library.

2.3.2 PJSUA-LIB API

Next up is PJSUA-LIB API that combines all those libraries into a high level, integrated client user agent library
written in C. This is the library that most PJSIP users use, and the highest level abstraction before pjsua2 was created.

Motivations for using PJSUA-LIB library includes:

1. Developing client application (PJSUA-LIB is optimized for developing client app)

2. Better efficiency than higher level API

8 Chapter 2. Development Guidelines and Considerations

http://trac.pjsip.org/repos/

PJSUA2 Documentation, Release 1.0-alpha

2.3.3 PJSUA2 C++ API

pjsua2 is a new, objected oriented, C++ API created on top of PJSUA-LIB. The API is different than PJSUA-LIB,
but it should be even easier to use and it should have better documentation too (such as this book). The pjsua2 API
removes most cruxes typically associated with PJSIP, such as the pool and pj_str_t, and add new features such as
object persistence so you can save your configs to a file, for example. All data structures are rewritten for more clarity.

A C++ application can use pjsua2 natively, while at the same time still has access to the lower level objects if it needs
to. This means that the C++ application should not lose any information from using the C++ abstraction, compared to
if it is using PJSUA-LIB directly. The C++ application also should not lose the ability to extend the library. It would
still be able to register a custom PJSIP module, pjmedia_port, pjmedia_transport, and so on.

Benefits of using pjsua2 C++ API include:

1. Cleaner object oriented API

2. Uniform API for higher level language such as Java and Python

3. Persistence API

4. The ability to access PJSUA-LIB and lower level libraries when needed (including the ability to extend the
libraries, for example creating custom PJSIP module, pjmedia_port, pjmedia_transport, etc.)

Some considerations on PJSUA2 C++ API are:

1. Instead of returning error, the API uses exception for error reporting

2. It uses standard C++ library (STL)

3. The performance penalty due to the API abstraction should be negligible on typical modern device

2.3.4 PJSUA2 API for Java, Python, and Others

The PJSUA2 API is also available for non-native code via SWIG binding. Configurations for Java and Python are
provided with the distribution. Thanks to SWIG, other language bindings may be generated relatively easily.

The pjsua2 API for non-native code is effectively the same as pjsua2 C++ API. However, unlike C++, you cannot
access PJSUA-LIB and the underlying C libraries from the scripting language, hence you are limited to what pjsua2
provides.

You can use this API if native application development is not available in target platform (such as Android), or if you
prefer to develop with non-native code instead of C/C++.

2.4 Network and Infrastructure Considerations

2.4.1 NAT Issues

TBD.

2.4.2 TCP Requirement

If you support iOS devices in your service, you need to use TCP, because only TCP will work on iOS device when it
is in background mode. This means your infrastructure needs to support TCP.

2.4. Network and Infrastructure Considerations 9

PJSUA2 Documentation, Release 1.0-alpha

2.5 Sound Device

2.5.1 Latency

TBD.

2.5.2 Echo Cancellation

TBD.

10 Chapter 2. Development Guidelines and Considerations

CHAPTER

THREE

PJSUA2-HIGH LEVEL API

PJSUA2 is an object-oriented abstraction above PJSUA API. It provides high level API for constructing Session
Initiation Protocol (SIP) multimedia user agent applications (a.k.a Voice over IP/VoIP softphones). It wraps together
the signaling, media, and NAT traversal functionality into easy to use call control API, account management, buddy
list management, presence, and instant messaging, along with multimedia features such as local conferencing, file
streaming, local playback, and voice recording, and powerful NAT traversal techniques utilizing STUN, TURN, and
ICE.

PJSUA2 is implemented on top of PJSUA-LIB API. The SIP and media features and object modelling follows what
PJSUA-LIB provides (for example, we still have accounts, call, buddy, and so on), but the API to access them is
different. These features will be described later in this chapter. PJSUA2 is a C++ library, which you can find under
pjsip directory in the PJSIP distribution. The C++ library can be used by native C++ applications directly. But
PJSUA2 is not just a C++ library. From the beginning, it has been designed to be accessible from high level non-
native languages such as Java and Python. This is achieved by SWIG binding. And thanks to SWIG, binding to other
languages can be added relatively easily in the future.

PJSUA2 API declaration can be found in pjsip/include/pjsua2 while the source codes are located in
pjsip/src/pjsua2. It will be automatically built when you compile PJSIP.

3.1 PJSUA2 Main Classes

Here are the main classes of the PJSUA2:

3.1.1 Endpoint

This is the main class of PJSUA2. You need to instantiate one and exactly one of this class, and from the instance you
can then initialize and start the library.

3.1.2 Account

An account specifies the identity of the person (or endpoint) on one side of SIP conversation. At least one account
instance needs to be created before anything else, and from the account instance you can start making/receiving calls
as well as adding buddies.

3.1.3 Media

This is an abstract base class that represents a media element which is capable to either produce media or
takes media. It is then subclassed into AudioMedia, which is then subclassed into concrete classes such as
AudioMediaPlayer and AudioMediaRecorder.

11

PJSUA2 Documentation, Release 1.0-alpha

3.1.4 Call

This class represents an ongoing call (or speaking technically, an INVITE session) and can be used to manipulate it,
such as to answer the call, hangup the call, put the call on hold, transfer the call, etc.

3.1.5 Buddy

This class represents a remote buddy (a person, or a SIP endpoint). You can subscribe to presence status of a buddy to
know whether the buddy is online/offline/etc., and you can send and receive instant messages to/from the buddy.

3.2 General Concepts

3.2.1 Class Usage Patterns

With the methods of the main classes above, you will be able to invoke various operations to the object quite easily. But
how can we get events/notifications from these classes? Each of the main classes above (except Media) will get their
events in the callback methods. So to handle these events, just derive a class from the corresponding class (Endpoint,
Call, Account, or Buddy) and implement/override the relevant method (depending on which event you want to handle).
More will be explained in later sections.

3.2.2 Error Handling

We use exceptions as means to report error, as this would make the program flows more naturally. Operations which
yield error will raise Error exception. If you prefer to display the error in more structured manner, the Error class has
several members to explain the error, such as the operation name that raised the error, the error code, and the error
message itself.

3.2.3 Asynchronous Operations

If you have developed applications with PJSIP, you’ll know about this already. In PJSIP, all operations that involve
sending and receiving SIP messages are asynchronous, meaning that the function that invokes the operation will
complete immediately, and you will be given the completion status as callbacks.

Take a look for example the makeCall() method of the Call class. This function is used to initiate outgoing call to a
destination. When this function returns successfully, it does not mean that the call has been established, but rather it
means that the call has been initiated successfully. You will be given the report of the call progress and/or completion
in the onCallState() callback method of Call class.

3.2.4 Threading

For platforms that require polling, the PJSUA2 module provides its own worker thread to poll PJSIP, so it is not
necessary to instantiate own your polling thread. Having said that the application should be prepared to have the
callbacks called by different thread than the main thread. The PJSUA2 module itself is thread safe.

Often though, especially if you use PJSUA2 with high level languages such as Python, it is required to disable PJSUA2
internal worker threads by setting EpConfig.uaConfig.threadCnt to 0, because the high level environment doesn’t like
to be called by external thread (such as PJSIP’s worker thread).

12 Chapter 3. PJSUA2-High Level API

PJSUA2 Documentation, Release 1.0-alpha

3.2.5 Problems with Garbage Collection

Garbage collection (GC) exists in Java and Python (and other languages, but we don’t support those for now), and
there are some problems with it when it comes to PJSUA2 usage:

• it delays the destruction of objects (including PJSUA2 objects), causing the code in object’s destructor to be
executed out of order

• the GC operation may run on different thread not previously registered to PJLIB, causing assertion

Due to problems above, application ‘’‘MUST immediately destroy PJSUA2 objects using object’s delete() method (in
Java)’‘’, instead of relying on the GC to clean up the object.

For example, to delete an Account, it’s NOT enough to just let it go out of scope. Application MUST delete it manually
like this (in Java):

acc.delete();

3.2.6 Objects Persistence

PJSUA2 includes PersistentObject class to provide functionality to read/write data from/to a document (string or
file). The data can be simple data types such as boolean, number, string, and string arrays, or a user defined object.
Currently the implementation supports reading and writing from/to JSON document ([http://tools.ietf.org/html/rfc4627
RFC 4627]), but the framework allows application to extend the API to support other document formats.

As such, classes which inherit from PersistentObject, such as EpConfig (endpoint configuration), AccountConfig
(account configuration), and BuddyConfig (buddy configuration) can be loaded/saved from/to a file. Heres an example
to save a config to a file:

EpConfig epCfg;
JsonDocument jDoc;
epCfg.uaConfig.maxCalls = 61;
epCfg.uaConfig.userAgent = "Just JSON Test";
jDoc.writeObject(epCfg);
jDoc.saveFile("jsontest.js");

To load from the file:

EpConfig epCfg;
JsonDocument jDoc;
jDoc.loadFile("jsontest.js");
jDoc.readObject(epCfg);

3.3 Building PJSUA2

The PJSUA2 C++ library will be built by default by PJSIP build system. Standard C++ library is required.

3.4 Building Python and Java SWIG Modules

The SWIG modules for Python and Java are built by invoking make and make install manually from
pjsip-apps/src/swig directory. The make install will install the Python SWIG module to user’s
site-packages directory.

3.3. Building PJSUA2 13

http://tools.ietf.org/html/rfc4627

PJSUA2 Documentation, Release 1.0-alpha

3.4.1 Requirements

1. SWIG

2. JDK.

3. Python, version 2.7 or above is required. For Linux/UNIX, you will also need Python developent
package (called python-devel (e.g. on Fedora) or python2.7-dev (e.g. on Ubuntu)). For Windows,
you will need MinGW and Python SDK such as ActivePython-2.7.5 from ActiveState.

3.4.2 Testing The Installation

To test the installation, simply run python and import pjsua2 module:

$ python
> import pjsua2
> ^Z

3.5 Using in C++ Application

As mentioned in previous chapter, a C++ application can use pjsua2 natively, while at the same time still has access
to the lower level objects and the ability to extend the libraries if it needs to. Using the API will be exactly the same
as the API reference that is written in this book.

Here is a sample complete C++ application to give you some idea about the API. The snippet below initializes the
library and creates an account that registers to our pjsip.org SIP server.

#include <pjsua2.hpp>
#include <iostream>

using namespace pj;

// Subclass to extend the Account and get notifications etc.
class MyAccount : public Account {
public:

virtual void onRegState(OnRegStateParam &prm) {
AccountInfo ai = getInfo();
std::cout << (ai.regIsActive? "*** Register:" : "*** Unregister:")

<< " code=" << prm.code << std::endl;
}

};

int main()
{

Endpoint ep;

ep.libCreate();

// Initialize endpoint
EpConfig ep_cfg;
ep.libInit(ep_cfg);

// Create SIP transport. Error handling sample is shown
TransportConfig tcfg;
tcfg.port = 5060;
try {

14 Chapter 3. PJSUA2-High Level API

http://www.swig.org
http://www.activestate.com/activepython/downloads
http://www.activestate.com

PJSUA2 Documentation, Release 1.0-alpha

ep.transportCreate(PJSIP_TRANSPORT_UDP, tcfg);
} catch (Error &err) {

std::cout << err.info() << std::endl;
return 1;

}

// Start the library (worker threads etc)
ep.libStart();
std::cout << "*** PJSUA2 STARTED ***" << std::endl;

// Configure an AccountConfig
AccountConfig acfg;
acfg.idUri = "sip:test@pjsip.org";
acfg.regConfig.registrarUri = "sip:pjsip.org";
AuthCredInfo cred("digest", "*", "test", 0, "secret");
acfg.sipConfig.authCreds.push_back(cred);

// Create the account
MyAccount *acc = new MyAccount;
acc->create(acfg);

// Here we don’t have anything else to do..
pj_thread_sleep(10000);

// Delete the account. This will unregister from server
delete acc;

// This will implicitly shutdown the library
return 0;

}

3.6 Using in Python Application

The equivalence of the C++ sample code above in Python is as follows:

Subclass to extend the Account and get notifications etc.
class Account(pj.Account):

def onRegState(self, prm):
print "***OnRegState: " + prm.reason

pjsua2 test function
def pjsua2_test():
Create and initialize the library
ep_cfg = pj.EpConfig()
ep = pj.Endpoint()
ep.libCreate()
ep.libInit(ep_cfg)

Create SIP transport. Error handling sample is shown
sipTpConfig = pj.TransportConfig();
sipTpConfig.port = 5060;
ep.transportCreate(pj.PJSIP_TRANSPORT_UDP, sipTpConfig);
Start the library
ep.libStart();

acfg = pj.AccountConfig();

3.6. Using in Python Application 15

PJSUA2 Documentation, Release 1.0-alpha

acfg.idUri = "sip:test@pjsip.org";
acfg.regConfig.registrarUri = "sip:pjsip.org";
cred = pj.AuthCredInfo("digest", "*", "test", 0, "pwtest");
acfg.sipConfig.authCreds.append(cred);
Create the account
acc = Account();
acc.create(acfg);
Here we don’t have anything else to do..
time.sleep(10);

Destroy the library
ep.libDestroy()

#
main()
#
if __name__ == "__main__":

pjsua2_test()

3.7 Using in Java Application

The equivalence of the C++ sample code above in Java is as follows:

import org.pjsip.pjsua2.*;

// Subclass to extend the Account and get notifications etc.
class MyAccount extends Account {
@Override
public void onRegState(OnRegStateParam prm) {

System.out.println("*** On registration state: " + prm.getCode() + prm.getReason());
}

}

public class test {
static {

System.loadLibrary("pjsua2");
System.out.println("Library loaded");

}

public static void main(String argv[]) {
try {

// Create endpoint
Endpoint ep = new Endpoint();
ep.libCreate();
// Initialize endpoint
EpConfig epConfig = new EpConfig();
ep.libInit(epConfig);
// Create SIP transport. Error handling sample is shown
TransportConfig sipTpConfig = new TransportConfig();
sipTpConfig.setPort(5060);
ep.transportCreate(pjsip_transport_type_e.PJSIP_TRANSPORT_UDP, sipTpConfig);
// Start the library
ep.libStart();

AccountConfig acfg = new AccountConfig();
acfg.setIdUri("sip:test@pjsip.org");

16 Chapter 3. PJSUA2-High Level API

PJSUA2 Documentation, Release 1.0-alpha

acfg.getRegConfig().setRegistrarUri("sip:pjsip.org");
AuthCredInfo cred = new AuthCredInfo("digest", "*", "test", 0, "secret");
acfg.getSipConfig().getAuthCreds().add(cred);
// Create the account
MyAccount acc = new MyAccount();
acc.create(acfg);
// Here we don’t have anything else to do..
Thread.sleep(10000);
/* Explicitly delete the account.

* This is to avoid GC to delete the endpoint first before deleting

* the account.

*/
acc.delete();

// Explicitly destroy and delete endpoint
ep.libDestroy();
ep.delete();

} catch (Exception e) {
System.out.println(e);
return;

}
}

}

3.7. Using in Java Application 17

PJSUA2 Documentation, Release 1.0-alpha

18 Chapter 3. PJSUA2-High Level API

CHAPTER

FOUR

ENDPOINT

The Endpoint class is a singleton class, and application MUST create one and at most one of this class instance before
it can do anything else, and similarly, once this class is destroyed, application must NOT call any library API. This
class is the core class of PJSUA2, and it provides the following functions:

• Starting up and shutting down

• Customization of configurations, such as core UA (User Agent) SIP configuration, media configuration, and
logging configuration

This chapter will describe the functions above.

To use the Endpoint class, normally application does not need to subclass it unless:

• application wants to implement/override Endpoints callback methods to get the events such as transport state
change or NAT detection completion, or

• application schedules a timer using Endpoint.utilTimerSchedule() API. In this case, application needs to imple-
ment the onTimer() callback to get the notification when the timer expires.

4.1 Instantiating the Endpoint

Before anything else, you must instantiate the Endpoint class:

Endpoint *ep = new Endpoint;

Once the endpoint is instantiated, you can retrieve the Endpoint instance using Endpoint.instance() static method.

4.2 Creating the Library

Create the library by calling its libCreate() method:

try {
ep->libCreate();

} catch(Error& err) {
cout << "Startup error: " << err.info() << endl;

}

The libCreate() method will raise exception if error occurs, so we need to trap the exception using try/catch clause as
above.

19

PJSUA2 Documentation, Release 1.0-alpha

4.3 Initializing the Library and Configuring the Settings

The EpConfig class provides endpoint configuration which allows the customization of the following settings:

• UAConfig, to specify core SIP user agent settings.

• MediaConfig, to specify various media global settings

• LogConfig, to customize logging settings.

Note that some settings can be further specified on per account basis, in the AccountConfig.

To customize the settings, create instance of EpConfig class and specify them during the endpoint initialization (will
be explained more later), for example:

EpConfig ep_cfg;
ep_cfg.logConfig.level = 5;
ep_cfg.uaConfig.maxCalls = 4;
ep_cfg.mediaConfig.sndClockRate = 16000;

Next, you can initialize the library by calling libInit():

try {
EpConfig ep_cfg;
// Specify customization of settings in ep_cfg
ep->libInit(ep_cfg);

} catch(Error& err) {
cout << "Initialization error: " << err.info() << endl;

}

The snippet above initializes the library with the default settings.

4.4 Creating One or More Transports

Application needs to create one or more transports before it can send or receive SIP messages:

try {
TransportConfig tcfg;
tcfg.port = 5060;
TransportId tid = ep->transportCreate(PJSIP_TRANSPORT_UDP, tcfg);

} catch(Error& err) {
cout << "Transport creation error: " << err.info() << endl;

}

The transportCreate() method returns the newly created Transport ID and it takes the transport type and TransportCon-
fig object to customize the transport settings like bound address and listening port number. Without this, by default
the transport will be bound to INADDR_ANY and any available port.

There is no real use of the Transport ID, except to create userless account (with Account.create(), as will be explained
later), and perhaps to display the list of transports to user if the application wants it.

4.5 Starting the Library

Now we’re ready to start the library. We need to start the library to finalize the initialization phase, e.g. to complete
the initial STUN address resolution, initialize/start the sound device, etc. To start the library, call libStart() method:

20 Chapter 4. Endpoint

PJSUA2 Documentation, Release 1.0-alpha

try {
ep->libStart();

} catch(Error& err) {
cout << "Startup error: " << err.info() << endl;

}

4.6 Shutting Down the Library

Once the application exits, the library needs to be shutdown so that resources can be released back to the operating
system. Although this can be done by deleting the Endpoint instance, which will internally call libDestroy(), it is
better to call it manually because on Java or Python there are problems with garbage collection as explained earlier:

ep->libDestroy();
delete ep;

4.7 Class Reference

4.7.1 The Endpoint

class pj::Endpoint

Endpoint represents an instance of pjsua library.

There can only be one instance of pjsua library in an application, hence this class is a singleton.

Public Functions

Endpoint()

Default constructor.

~Endpoint()

Virtual destructor.

Version libVersion()

Get library version.

void libCreate()

Instantiate pjsua application.

Application must call this function before calling any other functions, to make sure
that the underlying libraries are properly initialized. Once this function has returned
success, application must call destroy() before quitting.

4.6. Shutting Down the Library 21

PJSUA2 Documentation, Release 1.0-alpha

pjsua_state libGetState()

Get library state.

Return

library state.

void libInit(const EpConfig & prmEpConfig)

Initialize pjsua with the specified settings.

All the settings are optional, and the default values will be used when the config is
not specified.

Note that create() MUST be called before calling this function.

Parameters

• prmEpConfig - Endpoint configurations

void libStart()

Call this function after all initialization is done, so that the library can do additional
checking set up.

Application may call this function any time after init().

void libRegisterWorkerThread(const string & name)

Register a thread to poll for events.

This function should be called by an external worker thread, and it will block polling
for events until the library is destroyed.

void libStopWorkerThreads()

Stop all worker threads.

int libHandleEvents(unsigned msec_timeout)

Poll pjsua for events, and if necessary block the caller thread for the specified maxi-
mum interval (in miliseconds).

Application doesn’t normally need to call this function if it has configured worker
thread (thread_cnt field) in pjsua_config structure, because polling then will be done
by these worker threads instead.

If EpConfig::UaConfig::mainThreadOnly is enabled and this function is called from
the main thread (by default the main thread is thread that calls libCreate()), this func-
tion will also scan and run any pending jobs in the list.

22 Chapter 4. Endpoint

PJSUA2 Documentation, Release 1.0-alpha

Return

The number of events that have been handled during the poll. Negative value
indicates error, and application can retrieve the error as (status = -return_value).

Parameters

• msec_timeout - Maximum time to wait, in miliseconds.

void libDestroy(unsigned prmFlags = 0)

Destroy pjsua.

Application is recommended to perform graceful shutdown before calling this func-
tion (such as unregister the account from the SIP server, terminate presense subscrip-
tion, and hangup active calls), however, this function will do all of these if it finds
there are active sessions that need to be terminated. This function will block for few
seconds to wait for replies from remote.

Application.may safely call this function more than once if it doesn’t keep track of
it’s state.

Parameters

• prmFlags - Combination of pjsua_destroy_flag enumeration.

string utilStrError(pj_status_t prmErr)

Retrieve the error string for the specified status code.

Parameters

• prmErr - The error code.

void utilLogWrite(int prmLevel, const string & prmSender, const string & prmMsg)

Write a log message.

Parameters

• prmLevel - Log verbosity level (1-5)

• prmSender - The log sender.

• prmMsg - The log message.

void utilLogWrite(LogEntry & e)

Write a log entry.

Parameters

• e - The log entry.

4.7. Class Reference 23

PJSUA2 Documentation, Release 1.0-alpha

pj_status_t utilVerifySipUri(const string & prmUri)

This is a utility function to verify that valid SIP url is given.

If the URL is a valid SIP/SIPS scheme, PJ_SUCCESS will be returned.

Return

PJ_SUCCESS on success, or the appropriate error code.

See

utilVerifyUri()

Parameters

• prmUri - The URL string.

pj_status_t utilVerifyUri(const string & prmUri)

This is a utility function to verify that valid URI is given.

Unlike utilVerifySipUri(), this function will return PJ_SUCCESS if tel: URI is given.

Return

PJ_SUCCESS on success, or the appropriate error code.

See

pjsua_verify_sip_url()

Parameters

• prmUri - The URL string.

Token utilTimerSchedule(unsigned prmMsecDelay, Token prmUserData)

Schedule a timer with the specified interval and user data.

When the interval elapsed, onTimer() callback will be called. Note that the callback
may be executed by different thread, depending on whether worker thread is enabled
or not.

Return

Token to identify the timer, which could be given to utilTimerCancel().

Parameters

• prmMsecDelay - The time interval in msec.

• prmUserData - Arbitrary user data, to be given back to application in the
callback.

void utilTimerCancel(Token prmToken)

Cancel previously scheduled timer with the specified timer token.

24 Chapter 4. Endpoint

PJSUA2 Documentation, Release 1.0-alpha

Parameters

• prmToken - The timer token, which was returned from previous utilTimer-
Schedule() call.

void utilAddPendingJob(PendingJob * job)

Utility to register a pending job to be executed by main thread.

If EpConfig::UaConfig::mainThreadOnly is false, the job will be executed immedi-
ately.

Parameters

• job - The job class.

IntVector utilSslGetAvailableCiphers()

Get cipher list supported by SSL/TLS backend.

void natDetectType(void)

This is a utility function to detect NAT type in front of this endpoint.

Once invoked successfully, this function will complete asynchronously and report the
result in onNatDetectionComplete().

After NAT has been detected and the callback is called, application can get the de-
tected NAT type by calling natGetType(). Application can also perform NAT detec-
tion by calling natDetectType() again at later time.

Note that STUN must be enabled to run this function successfully.

pj_stun_nat_type natGetType()

Get the NAT type as detected by natDetectType() function.

This function will only return useful NAT type after natDetectType() has completed
successfully and onNatDetectionComplete() callback has been called.

Exception: if this function is called while detection is in progress, PJ_EPENDING
exception will be raised.

void natCheckStunServers(const StringVector & prmServers, bool prmWait, Token
prmUserData)

Auxiliary function to resolve and contact each of the STUN server entries (sequen-
tially) to find which is usable.

The libInit() must have been called before calling this function.

4.7. Class Reference 25

PJSUA2 Documentation, Release 1.0-alpha

See

natCancelCheckStunServers()

Parameters

• prmServers - Array of STUN servers to try. The endpoint will try to resolve
and contact each of the STUN server entry until it finds one that is usable.
Each entry may be a domain name, host name, IP address, and it may contain
an optional port number. For example:

• prmWait - Specify if the function should block until it gets the result. In
this case, the function will block while the resolution is being done, and the
callback will be called before this function returns.

• prmUserData - Arbitrary user data to be passed back to application in the
callback.

void natCancelCheckStunServers(Token token, bool notify_cb = false)

Cancel pending STUN resolution which match the specified token.

Exception: PJ_ENOTFOUND if there is no matching one, or other error.

Parameters

• token - The token to match. This token was given to natCheckStunServers()

• notify_cb - Boolean to control whether the callback should be called for
cancelled resolutions. When the callback is called, the status in the result will
be set as PJ_ECANCELLED.

TransportId transportCreate(pjsip_transport_type_e type, const TransportConfig & cfg)

Create and start a new SIP transport according to the specified settings.

Return

The transport ID.

Parameters

• type - Transport type.

• cfg - Transport configuration.

IntVector transportEnum()

Enumerate all transports currently created in the system.

This function will return all transport IDs, and application may then call transport-
GetInfo() function to retrieve detailed information about the transport.

Return

Array of transport IDs.

26 Chapter 4. Endpoint

PJSUA2 Documentation, Release 1.0-alpha

TransportInfo transportGetInfo(TransportId id)

Get information about transport.

Return

Transport info.

Parameters

• id - Transport ID.

void transportSetEnable(TransportId id, bool enabled)

Disable a transport or re-enable it.

By default transport is always enabled after it is created. Disabling a transport does
not necessarily close the socket, it will only discard incoming messages and prevent
the transport from being used to send outgoing messages.

Parameters

• id - Transport ID.

• enabled - Enable or disable the transport.

void transportClose(TransportId id)

Close the transport.

The system will wait until all transactions are closed while preventing new users from
using the transport, and will close the transport when its usage count reaches zero.

Parameters

• id - Transport ID.

void hangupAllCalls(void)

Terminate all calls.

This will initiate call hangup for all currently active calls.

void mediaAdd(AudioMedia & media)

Add media to the media list.

Parameters

• media - media to be added.

void mediaRemove(AudioMedia & media)

4.7. Class Reference 27

PJSUA2 Documentation, Release 1.0-alpha

Remove media from the media list.

Parameters

• media - media to be removed.

bool mediaExists(const AudioMedia & media)

Check if media has been added to the media list.

Return

True if media has been added, false otherwise.

Parameters

• media - media to be check.

unsigned mediaMaxPorts()

Get maximum number of media port.

Return

Maximum number of media port in the conference bridge.

unsigned mediaActivePorts()

Get current number of active media port in the bridge.

Return

The number of active media port.

const AudioMediaVector & mediaEnumPorts()

Enumerate all media port.

Return

The list of media port.

AudDevManager & audDevManager()

Get the instance of Audio Device Manager.

Return

The Audio Device Manager.

const CodecInfoVector & codecEnum()

28 Chapter 4. Endpoint

PJSUA2 Documentation, Release 1.0-alpha

Enum all supported codecs in the system.

Return

Array of codec info.

void codecSetPriority(const string & codec_id, pj_uint8_t priority)

Change codec priority.

Parameters

• codec_id - Codec ID, which is a string that uniquely identify the codec
(such as “speex/8000”).

• priority - Codec priority, 0-255, where zero means to disable the codec.

CodecParam codecGetParam(const string & codec_id)

Get codec parameters.

Return

Codec parameters. If codec is not found, Error will be thrown.

Parameters

• codec_id - Codec ID.

void codecSetParam(const string & codec_id, const CodecParam param)

Set codec parameters.

Parameters

• codec_id - Codec ID.

• param - Codec parameter to set. Set to NULL to reset codec parameter to
library default settings.

void onNatDetectionComplete(const OnNatDetectionCompleteParam & prm)

Callback when the Endpoint has finished performing NAT type detection that is ini-
tiated with natDetectType().

Parameters

• prm - Callback parameters containing the detection result.

void onNatCheckStunServersComplete(const OnNatCheckStunServersCompleteParam &
prm)

4.7. Class Reference 29

PJSUA2 Documentation, Release 1.0-alpha

Callback when the Endpoint has finished performing STUN server checking that is
initiated with natCheckStunServers().

Parameters

• prm - Callback parameters.

void onTransportState(const OnTransportStateParam & prm)

This callback is called when transport state has changed.

Parameters

• prm - Callback parameters.

void onTimer(const OnTimerParam & prm)

Callback when a timer has fired.

The timer was scheduled by utilTimerSchedule().

Parameters

• prm - Callback parameters.

void onSelectAccount(OnSelectAccountParam & prm)

This callback can be used by application to override the account to be used to handle
an incoming message.

Initially, the account to be used will be calculated automatically by the library. This
initial account will be used if application does not implement this callback, or appli-
cation sets an invalid account upon returning from this callback.

Note that currently the incoming messages requiring account assignment are INVITE,
MESSAGE, SUBSCRIBE, and unsolicited NOTIFY. This callback may be called
before the callback of the SIP event itself, i.e: incoming call, pager, subscription, or
unsolicited-event.

Parameters

• prm - Callback parameters.

Public Static Functions

Endpoint & instance()

Retrieve the singleton instance of the endpoint.

4.7.2 Endpoint Configurations

Endpoint

struct pj::EpConfig
#include <endpoint.hpp>

30 Chapter 4. Endpoint

PJSUA2 Documentation, Release 1.0-alpha

Endpoint configuration.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container.

Parameters

• node - Container to write values from.

void writeObject(ContainerNode & node)

Write this object to a container.

Parameters

• node - Container to write values to.

Public Members

UaConfig uaConfig

UA config.

LogConfig logConfig

Logging config.

MediaConfig medConfig

Media config.

Media

struct pj::MediaConfig
#include <endpoint.hpp>

This structure describes media configuration, which will be specified when calling Lib::init().

Public Functions

MediaConfig()

Default constructor initialises with default values.

void fromPj(const pjsua_media_config & mc)

Construct from pjsua_media_config.

pjsua_media_config toPj()

Export.

void readObject(const ContainerNode & node)

4.7. Class Reference 31

PJSUA2 Documentation, Release 1.0-alpha

Read this object from a container.

Parameters

• node - Container to write values from.

void writeObject(ContainerNode & node)

Write this object to a container.

Parameters

• node - Container to write values to.

Public Members

unsigned clockRate

Clock rate to be applied to the conference bridge.

If value is zero, default clock rate will be used (PJSUA_DEFAULT_CLOCK_RATE,
which by default is 16KHz).

unsigned sndClockRate

Clock rate to be applied when opening the sound device.

If value is zero, conference bridge clock rate will be used.

unsigned channelCount

Channel count be applied when opening the sound device and conference bridge.

unsigned audioFramePtime

Specify audio frame ptime.

The value here will affect the samples per frame of both the sound device and the
conference bridge. Specifying lower ptime will normally reduce the latency.

Default value: PJSUA_DEFAULT_AUDIO_FRAME_PTIME

unsigned maxMediaPorts

Specify maximum number of media ports to be created in the conference bridge.

Since all media terminate in the bridge (calls, file player, file recorder, etc), the value
must be large enough to support all of them. However, the larger the value, the more
computations are performed.

Default value: PJSUA_MAX_CONF_PORTS

bool hasIoqueue

Specify whether the media manager should manage its own ioqueue for the
RTP/RTCP sockets.

If yes, ioqueue will be created and at least one worker thread will be created too. If
no, the RTP/RTCP sockets will share the same ioqueue as SIP sockets, and no worker
thread is needed.

Normally application would say yes here, unless it wants to run everything from a
single thread.

unsigned threadCnt

32 Chapter 4. Endpoint

PJSUA2 Documentation, Release 1.0-alpha

Specify the number of worker threads to handle incoming RTP packets.

A value of one is recommended for most applications.

unsigned quality

Media quality, 0-10, according to this table: 5-10: resampling use large filter, 3-4:
resampling use small filter, 1-2: resampling use linear.

The media quality also sets speex codec quality/complexity to the number.

Default: 5 (PJSUA_DEFAULT_CODEC_QUALITY).

unsigned ptime

Specify default codec ptime.

Default: 0 (codec specific)

bool noVad

Disable VAD?

Default: 0 (no (meaning VAD is enabled))

unsigned ilbcMode

iLBC mode (20 or 30).

Default: 30 (PJSUA_DEFAULT_ILBC_MODE)

unsigned txDropPct

Percentage of RTP packet to drop in TX direction (to simulate packet lost).

Default: 0

unsigned rxDropPct

Percentage of RTP packet to drop in RX direction (to simulate packet lost).

Default: 0

unsigned ecOptions

Echo canceller options (see pjmedia_echo_create())

Default: 0.

unsigned ecTailLen

Echo canceller tail length, in miliseconds.

Setting this to zero will disable echo cancellation.

Default: PJSUA_DEFAULT_EC_TAIL_LEN

unsigned sndRecLatency

Audio capture buffer length, in milliseconds.

Default: PJMEDIA_SND_DEFAULT_REC_LATENCY

unsigned sndPlayLatency

Audio playback buffer length, in milliseconds.

Default: PJMEDIA_SND_DEFAULT_PLAY_LATENCY

int jbInit

4.7. Class Reference 33

PJSUA2 Documentation, Release 1.0-alpha

Jitter buffer initial prefetch delay in msec.

The value must be between jb_min_pre and jb_max_pre below.

Default: -1 (to use default stream settings, currently 150 msec)

int jbMinPre

Jitter buffer minimum prefetch delay in msec.

Default: -1 (to use default stream settings, currently 60 msec)

int jbMaxPre

Jitter buffer maximum prefetch delay in msec.

Default: -1 (to use default stream settings, currently 240 msec)

int jbMax

Set maximum delay that can be accomodated by the jitter buffer msec.

Default: -1 (to use default stream settings, currently 360 msec)

int sndAutoCloseTime

Specify idle time of sound device before it is automatically closed, in seconds.

Use value -1 to disable the auto-close feature of sound device

Default : 1

bool vidPreviewEnableNative

Specify whether built-in/native preview should be used if available.

In some systems, video input devices have built-in capability to show preview win-
dow of the device. Using this built-in preview is preferable as it consumes less CPU
power. If built-in preview is not available, the library will perform software rendering
of the input. If this field is set to PJ_FALSE, software preview will always be used.

Default: PJ_TRUE

Logging

struct pj::LogConfig
#include <endpoint.hpp>

Logging configuration, which can be (optionally) specified when calling Lib::init().

Public Functions

LogConfig()

Default constructor initialises with default values.

void fromPj(const pjsua_logging_config & lc)

Construct from pjsua_logging_config.

pjsua_logging_config toPj()

34 Chapter 4. Endpoint

PJSUA2 Documentation, Release 1.0-alpha

Generate pjsua_logging_config.

void readObject(const ContainerNode & node)

Read this object from a container.

Parameters

• node - Container to write values from.

void writeObject(ContainerNode & node)

Write this object to a container.

Parameters

• node - Container to write values to.

Public Members

unsigned msgLogging

Log incoming and outgoing SIP message? Yes!

unsigned level

Input verbosity level.

Value 5 is reasonable.

unsigned consoleLevel

Verbosity level for console.

Value 4 is reasonable.

unsigned decor

Log decoration.

string filename

Optional log filename if app wishes the library to write to log file.

unsigned fileFlags

Additional flags to be given to pj_file_open() when opening the log file.

By default, the flag is PJ_O_WRONLY. Application may set PJ_O_APPEND here so
that logs are appended to existing file instead of overwriting it.

Default is 0.

LogWriter * writer

Custom log writer, if required.

This instance will be destroyed by the endpoint when the endpoint is destroyed.

class pj::LogWriter

4.7. Class Reference 35

PJSUA2 Documentation, Release 1.0-alpha

Interface for writing log messages.

Applications can inherit this class and supply it in the LogConfig structure to implement custom log
writing facility.

Public Functions

~LogWriter()

Destructor.

void write(const LogEntry & entry)

Write a log entry.

struct pj::LogEntry
#include <endpoint.hpp>

Data containing log entry to be written by the LogWriter.

Public Members

int level

Log verbosity level of this message.

string msg

The log message.

long threadId

ID of current thread.

string threadName

The name of the thread that writes this log.

User Agent

struct pj::UaConfig
#include <endpoint.hpp>

SIP User Agent related settings.

Public Functions

UaConfig()

Default constructor to initialize with default values.

void fromPj(const pjsua_config & ua_cfg)

Construct from pjsua_config.

36 Chapter 4. Endpoint

PJSUA2 Documentation, Release 1.0-alpha

pjsua_config toPj()

Export to pjsua_config.

void readObject(const ContainerNode & node)

Read this object from a container.

Parameters

• node - Container to write values from.

void writeObject(ContainerNode & node)

Write this object to a container.

Parameters

• node - Container to write values to.

Public Members

unsigned maxCalls

Maximum calls to support (default: 4).

The value specified here must be smaller than the compile time maximum settings
PJSUA_MAX_CALLS, which by default is 32. To increase this limit, the library
must be recompiled with new PJSUA_MAX_CALLS value.

unsigned threadCnt

Number of worker threads.

Normally application will want to have at least one worker thread, unless when it
wants to poll the library periodically, which in this case the worker thread can be set
to zero.

bool mainThreadOnly

When this flag is non-zero, all callbacks that come from thread other than main thread
will be posted to the main thread and to be executed by Endpoint::libHandleEvents()
function.

This includes the logging callback. Note that this will only work if threadCnt is set to
zero and Endpoint::libHandleEvents() is performed by main thread. By default, the
main thread is set from the thread that invoke Endpoint::libCreate()

Default: false

StringVector nameserver

Array of nameservers to be used by the SIP resolver subsystem.

The order of the name server specifies the priority (first name server will be used first,
unless it is not reachable).

string userAgent

4.7. Class Reference 37

PJSUA2 Documentation, Release 1.0-alpha

Optional user agent string (default empty).

If it’s empty, no User-Agent header will be sent with outgoing requests.

StringVector stunServer

Array of STUN servers to try.

The library will try to resolve and contact each of the STUN server entry until it finds
one that is usable. Each entry may be a domain name, host name, IP address, and it
may contain an optional port number. For example:

When nameserver is configured in the pjsua_config.nameserver field, if entry is not
an IP address, it will be resolved with DNS SRV resolution first, and it will fallback
to use DNS A resolution if this fails. Port number may be specified even if the entry
is a domain name, in case the DNS SRV resolution should fallback to a non-standard
port.

When nameserver is not configured, entries will be resolved with pj_gethostbyname()
if it’s not an IP address. Port number may be specified if the server is not listening in
standard STUN port.

bool stunIgnoreFailure

This specifies if the library startup should ignore failure with the STUN servers.

If this is set to PJ_FALSE, the library will refuse to start if it fails to resolve or contact
any of the STUN servers.

Default: TRUE

int natTypeInSdp

Support for adding and parsing NAT type in the SDP to assist troubleshooting.

The valid values are:

Default: 1

bool mwiUnsolicitedEnabled

Handle unsolicited NOTIFY requests containing message waiting indication (MWI)
info.

Unsolicited MWI is incoming NOTIFY requests which are not requested by client
with SUBSCRIBE request.

If this is enabled, the library will respond 200/OK to the NOTIFY request and forward
the request to Endpoint::onMwiInfo() callback.

See also AccountMwiConfig.enabled.

Default: PJ_TRUE

4.7.3 Callback Parameters

struct pj::OnNatDetectionCompleteParam
#include <endpoint.hpp>

Argument to Endpoint::onNatDetectionComplete() callback.

Public Members

38 Chapter 4. Endpoint

PJSUA2 Documentation, Release 1.0-alpha

pj_status_t status

Status of the detection process.

If this value is not PJ_SUCCESS, the detection has failed and nat_type field will
contain PJ_STUN_NAT_TYPE_UNKNOWN.

string reason

The text describing the status, if the status is not PJ_SUCCESS.

pj_stun_nat_type natType

This contains the NAT type as detected by the detection procedure.

This value is only valid when the status is PJ_SUCCESS.

string natTypeName

Text describing that NAT type.

struct pj::OnNatCheckStunServersCompleteParam
#include <endpoint.hpp>

Argument to Endpoint::onNatCheckStunServersComplete() callback.

Public Members

Token userData

Arbitrary user data that was passed to Endpoint::natCheckStunServers() function.

pj_status_t status

This will contain PJ_SUCCESS if at least one usable STUN server is found, other-
wise it will contain the last error code during the operation.

string name

The server name that yields successful result.

This will only contain value if status is successful.

SocketAddress addr

The server IP address and port in “IP:port” format.

This will only contain value if status is successful.

struct pj::OnTimerParam
#include <endpoint.hpp>

Parameter of Endpoint::onTimer() callback.

Public Members

Token userData

Arbitrary user data that was passed to Endpoint::utilTimerSchedule() function.

unsigned msecDelay

The interval of this timer, in miliseconds.

4.7. Class Reference 39

PJSUA2 Documentation, Release 1.0-alpha

struct pj::OnTransportStateParam
#include <endpoint.hpp>

Parameter of Endpoint::onTransportState() callback.

Public Members

TransportHandle hnd

The transport handle.

pjsip_transport_state state

Transport current state.

pj_status_t lastError

The last error code related to the transport state.

struct pj::OnSelectAccountParam
#include <endpoint.hpp>

Parameter of Endpoint::onSelectAccount() callback.

Public Members

SipRxData rdata

The incoming request.

int accountIndex

The account index to be used to handle the request.

Upon entry, this will be filled by the account index chosen by the library. Application
may change it to another value to use another account.

4.7.4 Other

struct pj::PendingJob

Public Functions

void execute(bool is_pending)

Perform the job.

~PendingJob()

Virtual destructor.

40 Chapter 4. Endpoint

CHAPTER

FIVE

ACCOUNTS

Accounts provide identity (or identities) of the user who is currently using the application. An account has one SIP
Uniform Resource Identifier (URI) associated with it. In SIP terms, this URI acts as Address of Record (AOR) of the
person and is used as the From header in outgoing requests.

Account may or may not have client registration associated with it. An account is also associated with route set and
some authentication credentials, which are used when sending SIP request messages using the account. An account
also has presence status, which will be reported to remote peer when they subscribe to the account’s presence, or which
is published to a presence server if presence publication is enabled for the account.

At least one account MUST be created in the application, since any outgoing requests require an account context. If no
user association is required, application can create a userless account by calling Account.create(). A userless account
identifies local endpoint instead of a particular user, and it corresponds to a particular transport ID.

Also one account must be set as the default account, which will be used as the account identity when pjsua fails to
match incoming request with any accounts using the stricter matching rules.

5.1 Subclassing the Account class

To use the Account class, normally application SHOULD create its own subclass, in order to receive notifications for
the account. For example:

class MyAccount : public Account
{
public:

MyAccount() {}
~MyAccount() {}

virtual void onRegState(OnRegStateParam &prm)
{

AccountInfo ai = getInfo();
cout << (ai.regIsActive? "*** Register: code=" : "*** Unregister: code=")

<< prm.code << endl;
}

virtual void onIncomingCall(OnIncomingCallParam &iprm)
{

Call *call = new MyCall(*this, iprm.callId);

// Just hangup for now
CallOpParam op;
op.statusCode = PJSIP_SC_DECLINE;
call->hangup(op);

41

PJSUA2 Documentation, Release 1.0-alpha

// And delete the call
delete call;

}
};

In its subclass, application can implement the account callbacks, which is basically used to process events related to
the account, such as:

• the status of SIP registration

• incoming calls

• incoming presence subscription requests

• incoming instant message not from buddy

Application needs to override the relevant callback methods in the derived class to handle these particular events.

If the events are not handled, default actions will be invoked:

• incoming calls will not be handled

• incoming presence subscription requests will be accepted

• incoming instant messages from non-buddy will be ignored

5.2 Creating Userless Accounts

A userless account identifies a particular SIP endpoint rather than a particular user. Some other SIP softphones may
call this peer-to-peer mode, which means that we are calling another computer via its address rather than calling a
particular user ID. For example, we might identify ourselves as “sip:192.168.0.15” (a userless account) rather than,
say, “sip:alice@pjsip.org”.

In the lower layer PJSUA-LIB API, a userless account is associated with a SIP transport, and is created with
pjsua_acc_add_local() API. This concept has been deprecated in PJSUA2, and rather, a userless account
is a “normal” account with a userless ID URI (e.g. “sip:192.168.0.15”) and without registration. Thus creating a
userless account is exactly the same as creating “normal” account.

5.3 Creating Account

We need to configure AccountConfig and call Account.create() to create the account. At the very minimum, pjsua only
requires the account’s ID, which is an URI to identify the account (or in SIP terms, it’s called Address of Record/AOR).
Here’s a snippet:

AccountConfig acc_cfg;
acc_cfg.idUri = "sip:test1@pjsip.org";

MyAccount *acc = new MyAccount;
try {

acc->create(acc_cfg);
} catch(Error& err) {

cout << "Account creation error: " << err.info() << endl;
}

The account created above doesn’t do anything except to provide identity in the “From:” header for outgoing requests.
The account will not register to SIP server or anything.

42 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

Typically you will want the account to authenticate and register to your SIP server so that you can receive incoming
calls. To do that you will need to configure some more settings in your AccountConfig, something like this:

AccountConfig acc_cfg;
acc_cfg.idUri = "sip:test1@pjsip.org";
acc_cfg.regConfig.registrarUri = "sip:pjsip.org";
acc_cfg.sipConfig.authCreds.push_back(AuthCredInfo("digest", "*", "test1", 0, "secret1"));

MyAccount *acc = new MyAccount;
try {

acc->create(acc_cfg);
} catch(Error& err) {

cout << "Account creation error: " << err.info() << endl;
}

5.4 Account Configurations

There are many more settings that can be specified in AccountConfig, like:

• AccountRegConfig, to specify registration settings, such as registrar server and retry interval.

• AccountSipConfig, to specify SIP settings, such as credential information and proxy server.

• AccountCallConfig, to specify call settings, such as whether reliable provisional response (SIP 100rel) is re-
quired.

• AccountPresConfig, to specify presence settings, such as whether presence publication (PUBLISH) is enabled.

• AccountMwiConfig, to specify MWI (Message Waiting Indication) settings.

• AccountNatConfig, to specify NAT settings, such as whether STUN or ICE is used.

• AccountMediaConfig, to specify media settings, such as Secure RTP (SRTP) related settings.

• AccountVideoConfig, to specify video settings, such as default capture and render device.

Please see AccountConfig reference documentation for more info.

5.5 Account Operations

Some of the operations to the Account object:

• manage registration

• manage buddies/contacts

• manage presence online status

Please see the reference documentation for Account for more info. Calls, presence, and buddy will be explained in
later chapters.

5.6 Class Reference

5.6.1 Account

class pj::Account

5.4. Account Configurations 43

PJSUA2 Documentation, Release 1.0-alpha

Account.

Public Functions

Account()

Constructor.

~Account()

Destructor.

Note that if the account is deleted, it will also delete the corresponding account in the
PJSUA-LIB.

void create(const AccountConfig & cfg, bool make_default = false)

Create the account.

Parameters

• cfg - The account config.

• make_default - Make this the default account.

void modify(const AccountConfig & cfg)

Modify the account to use the specified account configuration.

Depending on the changes, this may cause unregistration or reregistration on the ac-
count.

Parameters

• cfg - New account config to be applied to the account.

bool isValid()

Check if this account is still valid.

Return

True if it is.

void setDefault()

Set this as default account to be used when incoming and outgoing requests don’t
match any accounts.

Return

PJ_SUCCESS on success.

44 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

bool isDefault()

Check if this account is the default account.

Default account will be used for incoming and outgoing requests that don’t match
any other accounts.

Return

True if this is the default account.

int getId()

Get PJSUA-LIB account ID or index associated with this account.

Return

Integer greater than or equal to zero.

AccountInfo getInfo()

Get account info.

Return

Account info.

void setRegistration(bool renew)

Update registration or perform unregistration.

Application normally only needs to call this function if it wants to manually update
the registration or to unregister from the server.

Parameters

• renew - If False, this will start unregistration process.

void setOnlineStatus(const PresenceStatus & pres_st)

Set or modify account’s presence online status to be advertised to remote/presence
subscribers.

This would trigger the sending of outgoing NOTIFY request if there are server side
presence subscription for this account, and/or outgoing PUBLISH if presence publi-
cation is enabled for this account.

Parameters

• pres_st - Presence online status.

void setTransport(TransportId tp_id)

5.6. Class Reference 45

PJSUA2 Documentation, Release 1.0-alpha

Lock/bind this account to a specific transport/listener.

Normally application shouldn’t need to do this, as transports will be selected auto-
matically by the library according to the destination.

When account is locked/bound to a specific transport, all outgoing requests from this
account will use the specified transport (this includes SIP registration, dialog (call
and event subscription), and out-of-dialog requests such as MESSAGE).

Note that transport id may be specified in AccountConfig too.

Parameters

• tp_id - The transport ID.

void presNotify(const PresNotifyParam & prm)

Send NOTIFY to inform account presence status or to terminate server side presence
subscription.

If application wants to reject the incoming request, it should set the param PresNoti-
fyParam.state to PJSIP_EVSUB_STATE_TERMINATED.

Parameters

• prm - The sending NOTIFY parameter.

const BuddyVector & enumBuddies()

Enumerate all buddies of the account.

Return

The buddy list.

Buddy * findBuddy(string uri, FindBuddyMatch * buddy_match = NULL)

Find a buddy in the buddy list with the specified URI.

Exception: if buddy is not found, PJ_ENOTFOUND will be thrown.

Return

The pointer to buddy.

Parameters

• uri - The buddy URI.

• buddy_match - The buddy match algo.

void addBuddy(Buddy * buddy)

An internal function to add a Buddy to Account buddy list.

This function must never be used by application.

46 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

void removeBuddy(Buddy * buddy)

An internal function to remove a Buddy from Account buddy list.

This function must never be used by application.

void onIncomingCall(OnIncomingCallParam & prm)

Notify application on incoming call.

Parameters

• prm - Callback parameter.

void onRegStarted(OnRegStartedParam & prm)

Notify application when registration or unregistration has been initiated.

Note that this only notifies the initial registration and unregistration. Once registration
session is active, subsequent refresh will not cause this callback to be called.

Parameters

• prm - Callback parameter.

void onRegState(OnRegStateParam & prm)

Notify application when registration status has changed.

Application may then query the account info to get the registration details.

Parameters

• prm - Callback parameter.

void onIncomingSubscribe(OnIncomingSubscribeParam & prm)

Notification when incoming SUBSCRIBE request is received.

Application may use this callback to authorize the incoming subscribe request (e.g.
ask user permission if the request should be granted).

If this callback is not implemented, all incoming presence subscription requests will
be accepted.

If this callback is implemented, application has several choices on what to do with
the incoming request:

Any IncomingSubscribeParam.code other than 200 and 202 will be treated as 200.

Application MUST return from this callback immediately (e.g. it must not block in
this callback while waiting for user confirmation).

Parameters

5.6. Class Reference 47

PJSUA2 Documentation, Release 1.0-alpha

• prm - Callback parameter.

void onInstantMessage(OnInstantMessageParam & prm)

Notify application on incoming instant message or pager (i.e.

MESSAGE request) that was received outside call context.

Parameters

• prm - Callback parameter.

void onInstantMessageStatus(OnInstantMessageStatusParam & prm)

Notify application about the delivery status of outgoing pager/instant message (i.e.

MESSAGE) request.

Parameters

• prm - Callback parameter.

void onTypingIndication(OnTypingIndicationParam & prm)

Notify application about typing indication.

Parameters

• prm - Callback parameter.

void onMwiInfo(OnMwiInfoParam & prm)

Notification about MWI (Message Waiting Indication) status change.

This callback can be called upon the status change of the SUBSCRIBE request (for
example, 202/Accepted to SUBSCRIBE is received) or when a NOTIFY reqeust is
received.

Parameters

• prm - Callback parameter.

Public Static Functions

Account * lookup(int acc_id)

Get the Account class for the specified account Id.

Return

The Account instance or NULL if not found.

Parameters

• acc_id - The account ID to lookup

48 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

5.6.2 AccountInfo

struct pj::AccountInfo
#include <account.hpp>

Account information.

Application can query the account information by calling Account::getInfo().

Public Functions

void fromPj(const pjsua_acc_info & pai)

Import from pjsip data.

Public Members

pjsua_acc_id id

The account ID.

bool isDefault

Flag to indicate whether this is the default account.

string uri

Account URI.

bool regIsConfigured

Flag to tell whether this account has registration setting (reg_uri is not empty).

bool regIsActive

Flag to tell whether this account is currently registered (has active registration ses-
sion).

int regExpiresSec

An up to date expiration interval for account registration session.

pjsip_status_code regStatus

Last registration status code.

If status code is zero, the account is currently not registered. Any other value indicates
the SIP status code of the registration.

string regStatusText

String describing the registration status.

pj_status_t regLastErr

Last registration error code.

When the status field contains a SIP status code that indicates a registration failure,
last registration error code contains the error code that causes the failure. In any other
case, its value is zero.

bool onlineStatus

Presence online status for this account.

string onlineStatusText

Presence online status text.

5.6. Class Reference 49

PJSUA2 Documentation, Release 1.0-alpha

5.6.3 Account Settings

AccountConfig

struct pj::AccountConfig
#include <account.hpp>

Account configuration.

Public Functions

AccountConfig()

Default constructor will initialize with default values.

void toPj(pjsua_acc_config & cfg)

This will return a temporary pjsua_acc_config instance, which contents are only valid
as long as this AccountConfig structure remains valid AND no modifications are done
to it AND no further toPj() function call is made.

Any call to toPj() function will invalidate the content of temporary pjsua_acc_config
that was returned by the previous call.

void fromPj(const pjsua_acc_config & prm, const pjsua_media_config * mcfg)

Initialize from pjsip.

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

int priority

Account priority, which is used to control the order of matching incoming/outgoing
requests.

The higher the number means the higher the priority is, and the account will be
matched first.

50 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

string idUri

The Address of Record or AOR, that is full SIP URL that identifies the account.

The value can take name address or URL format, and will look something like
“sip:account@serviceprovider”.

This field is mandatory.

AccountRegConfig regConfig

Registration settings.

AccountSipConfig sipConfig

SIP settings.

AccountCallConfig callConfig

Call settings.

AccountPresConfig presConfig

Presence settings.

AccountMwiConfig mwiConfig

MWI (Message Waiting Indication) settings.

AccountNatConfig natConfig

NAT settings.

AccountMediaConfig mediaConfig

Media settings (applicable for both audio and video).

AccountVideoConfig videoConfig

Video settings.

AccoutRegConfig

struct pj::AccountRegConfig
#include <account.hpp>

Account registration config.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

5.6. Class Reference 51

PJSUA2 Documentation, Release 1.0-alpha

Parameters

• node - Container to write values to.

Public Members

string registrarUri

This is the URL to be put in the request URI for the registration, and will look some-
thing like “sip:serviceprovider”.

This field should be specified if registration is desired. If the value is empty, no
account registration will be performed.

bool registerOnAdd

Specify whether the account should register as soon as it is added to the UA.

Application can set this to PJ_FALSE and control the registration manually with pj-
sua_acc_set_registration().

Default: True

SipHeaderVector headers

The optional custom SIP headers to be put in the registration request.

unsigned timeoutSec

Optional interval for registration, in seconds.

If the value is zero, default interval will be used (PJSUA_REG_INTERVAL, 300
seconds).

unsigned retryIntervalSec

Specify interval of auto registration retry upon registration failure (including caused
by transport problem), in second.

Set to 0 to disable auto re-registration. Note that if the registration retry occurs be-
cause of transport failure, the first retry will be done after firstRetryIntervalSec sec-
onds instead. Also note that the interval will be randomized slightly by approximately
+/- ten seconds to avoid all clients re-registering at the same time.

See also firstRetryIntervalSec setting.

Default: PJSUA_REG_RETRY_INTERVAL

unsigned firstRetryIntervalSec

This specifies the interval for the first registration retry.

The registration retry is explained in retryIntervalSec. Note that the value here will
also be randomized by +/- ten seconds.

Default: 0

unsigned delayBeforeRefreshSec

Specify the number of seconds to refresh the client registration before the registration
expires.

Default: PJSIP_REGISTER_CLIENT_DELAY_BEFORE_REFRESH, 5 seconds

bool dropCallsOnFail

52 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

Specify whether calls of the configured account should be dropped after registration
failure and an attempt of re-registration has also failed.

Default: FALSE (disabled)

unsigned unregWaitSec

Specify the maximum time to wait for unregistration requests to complete during
library shutdown sequence.

Default: PJSUA_UNREG_TIMEOUT

unsigned proxyUse

Specify how the registration uses the outbound and account proxy settings.

This controls if and what Route headers will appear in the REGIS-
TER request of this account. The value is bitmask combination of PJ-
SUA_REG_USE_OUTBOUND_PROXY and PJSUA_REG_USE_ACC_PROXY
bits. If the value is set to 0, the REGISTER request will not use any proxy (i.e. it
will not have any Route headers).

Default: 3 (PJSUA_REG_USE_OUTBOUND_PROXY | PJ-
SUA_REG_USE_ACC_PROXY)

AccountSipConfig

struct pj::AccountSipConfig
#include <account.hpp>

Various SIP settings for the account.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

AuthCredInfoVector authCreds

Array of credentials.

If registration is desired, normally there should be at least one credential specified,
to successfully authenticate against the service provider. More credentials can be

5.6. Class Reference 53

PJSUA2 Documentation, Release 1.0-alpha

specified, for example when the requests are expected to be challenged by the proxies
in the route set.

StringVector proxies

Array of proxy servers to visit for outgoing requests.

Each of the entry is translated into one Route URI.

string contactForced

Optional URI to be put as Contact for this account.

It is recommended that this field is left empty, so that the value will be calculated
automatically based on the transport address.

string contactParams

Additional parameters that will be appended in the Contact header for this account.

This will affect the Contact header in all SIP messages sent on behalf of this ac-
count, including but not limited to REGISTER, INVITE, and SUBCRIBE requests
or responses.

The parameters should be preceeded by semicolon, and all strings must be properly
escaped. Example: ”;my-param=X;another-param=Hi%20there”

string contactUriParams

Additional URI parameters that will be appended in the Contact URI for this account.

This will affect the Contact URI in all SIP messages sent on behalf of this account,
including but not limited to REGISTER, INVITE, and SUBCRIBE requests or re-
sponses.

The parameters should be preceeded by semicolon, and all strings must be properly
escaped. Example: ”;my-param=X;another-param=Hi%20there”

bool authInitialEmpty

If this flag is set, the authentication client framework will send an empty Authoriza-
tion header in each initial request.

Default is no.

string authInitialAlgorithm

Specify the algorithm to use when empty Authorization header is to be sent for each
initial request (see above)

TransportId transportId

Optionally bind this account to specific transport.

This normally is not a good idea, as account should be able to send requests using
any available transports according to the destination. But some application may want
to have explicit control over the transport to use, so in that case it can set this field.

Default: -1 (PJSUA_INVALID_ID)

See

Account::setTransport()

54 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

AccountCallConfig

struct pj::AccountCallConfig
#include <account.hpp>

Account‘s call settings.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

pjsua_call_hold_type holdType

Specify how to offer call hold to remote peer.

Please see the documentation on pjsua_call_hold_type for more info.

Default: PJSUA_CALL_HOLD_TYPE_DEFAULT

pjsua_100rel_use prackUse

Specify how support for reliable provisional response (100rel/ PRACK) should be
used for all sessions in this account.

See the documentation of pjsua_100rel_use enumeration for more info.

Default: PJSUA_100REL_NOT_USED

pjsua_sip_timer_use timerUse

Specify the usage of Session Timers for all sessions.

See the pjsua_sip_timer_use for possible values.

Default: PJSUA_SIP_TIMER_OPTIONAL

unsigned timerMinSESec

Specify minimum Session Timer expiration period, in seconds.

Must not be lower than 90. Default is 90.

unsigned timerSessExpiresSec

Specify Session Timer expiration period, in seconds.

Must not be lower than timerMinSE. Default is 1800.

5.6. Class Reference 55

PJSUA2 Documentation, Release 1.0-alpha

AccountPresConfig

struct pj::AccountPresConfig
#include <account.hpp>

Account presence config.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

SipHeaderVector headers

The optional custom SIP headers to be put in the presence subscription request.

bool publishEnabled

If this flag is set, the presence information of this account will be PUBLISH-ed to the
server where the account belongs.

Default: PJ_FALSE

bool publishQueue

Specify whether the client publication session should queue the PUBLISH request
should there be another PUBLISH transaction still pending.

If this is set to false, the client will return error on the PUBLISH request if there is
another PUBLISH transaction still in progress.

Default: PJSIP_PUBLISHC_QUEUE_REQUEST (TRUE)

unsigned publishShutdownWaitMsec

Maximum time to wait for unpublication transaction(s) to complete during shutdown
process, before sending unregistration.

The library tries to wait for the unpublication (un-PUBLISH) to complete before
sending REGISTER request to unregister the account, during library shutdown pro-
cess. If the value is set too short, it is possible that the unregistration is sent before
unpublication completes, causing unpublication request to fail.

Value is in milliseconds.

Default: PJSUA_UNPUBLISH_MAX_WAIT_TIME_MSEC (2000)

56 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

string pidfTupleId

Optional PIDF tuple ID for outgoing PUBLISH and NOTIFY.

If this value is not specified, a random string will be used.

AccountMwiConfig

struct pj::AccountMwiConfig
#include <account.hpp>

Account MWI (Message Waiting Indication) settings.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

bool enabled

Subscribe to message waiting indication events (RFC 3842).

See also UaConfig.mwiUnsolicitedEnabled setting.

Default: FALSE

unsigned expirationSec

Specify the default expiration time (in seconds) for Message Waiting Indication (RFC
3842) event subscription.

This must not be zero.

Default: PJSIP_MWI_DEFAULT_EXPIRES (3600)

AccountNatConfig

struct pj::AccountNatConfig
#include <account.hpp>

5.6. Class Reference 57

PJSUA2 Documentation, Release 1.0-alpha

Account‘s NAT (Network Address Translation) settings.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

pjsua_stun_use sipStunUse

Control the use of STUN for the SIP signaling.

Default: PJSUA_STUN_USE_DEFAULT

pjsua_stun_use mediaStunUse

Control the use of STUN for the media transports.

Default: PJSUA_STUN_USE_DEFAULT

bool iceEnabled

Enable ICE for the media transport.

Default: False

int iceMaxHostCands

Set the maximum number of ICE host candidates.

Default: -1 (maximum not set)

bool iceAggressiveNomination

Specify whether to use aggressive nomination.

Default: True

unsigned iceNominatedCheckDelayMsec

For controlling agent if it uses regular nomination, specify the delay to perform nom-
inated check (connectivity check with USE-CANDIDATE attribute) after all compo-
nents have a valid pair.

Default value is PJ_ICE_NOMINATED_CHECK_DELAY.

int iceWaitNominationTimeoutMsec

58 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

For a controlled agent, specify how long it wants to wait (in milliseconds) for the
controlling agent to complete sending connectivity check with nominated flag set
to true for all components after the controlled agent has found that all connectivity
checks in its checklist have been completed and there is at least one successful (but
not nominated) check for every component.

Default value for this option is ICE_CONTROLLED_AGENT_WAIT_NOMINATION_TIMEOUT.
Specify -1 to disable this timer.

bool iceNoRtcp

Disable RTCP component.

Default: False

bool iceAlwaysUpdate

Always send re-INVITE/UPDATE after ICE negotiation regardless of whether the
default ICE transport address is changed or not.

When this is set to False, re-INVITE/UPDATE will be sent only when the default
ICE transport address is changed.

Default: yes

bool turnEnabled

Enable TURN candidate in ICE.

string turnServer

Specify TURN domain name or host name, in in “DOMAIN:PORT” or
“HOST:PORT” format.

pj_turn_tp_type turnConnType

Specify the connection type to be used to the TURN server.

Valid values are PJ_TURN_TP_UDP or PJ_TURN_TP_TCP.

Default: PJ_TURN_TP_UDP

string turnUserName

Specify the username to authenticate with the TURN server.

int turnPasswordType

Specify the type of password.

Currently this must be zero to indicate plain-text password will be used in the pass-
word.

string turnPassword

Specify the password to authenticate with the TURN server.

int contactRewriteUse

This option is used to update the transport address and the Contact header of REGIS-
TER request.

When this option is enabled, the library will keep track of the public IP address from
the response of REGISTER request. Once it detects that the address has changed,
it will unregister current Contact, update the Contact with transport address learned
from Via header, and register a new Contact to the registrar. This will also update the
public name of UDP transport if STUN is configured.

5.6. Class Reference 59

PJSUA2 Documentation, Release 1.0-alpha

See also contactRewriteMethod field.

Default: TRUE

int contactRewriteMethod

Specify how Contact update will be done with the registration, if contactRewriteEn-
abled is enabled.

The value is bitmask combination of pjsua_contact_rewrite_method. See also pj-
sua_contact_rewrite_method.

Value PJSUA_CONTACT_REWRITE_UNREGISTER(1) is the legacy behavior.

Default value: PJSUA_CONTACT_REWRITE_METHOD
(PJSUA_CONTACT_REWRITE_NO_UNREG | PJ-
SUA_CONTACT_REWRITE_ALWAYS_UPDATE)

int viaRewriteUse

This option is used to overwrite the “sent-by” field of the Via header for outgoing
messages with the same interface address as the one in the REGISTER request, as
long as the request uses the same transport instance as the previous REGISTER re-
quest.

Default: TRUE

int sdpNatRewriteUse

This option controls whether the IP address in SDP should be replaced with the IP
address found in Via header of the REGISTER response, ONLY when STUN and
ICE are not used.

If the value is FALSE (the original behavior), then the local IP address will be used.
If TRUE, and when STUN and ICE are disabled, then the IP address found in regis-
tration response will be used.

Default: PJ_FALSE (no)

int sipOutboundUse

Control the use of SIP outbound feature.

SIP outbound is described in RFC 5626 to enable proxies or registrar to send inbound
requests back to UA using the same connection initiated by the UA for its registration.
This feature is highly useful in NAT-ed deployemtns, hence it is enabled by default.

Note: currently SIP outbound can only be used with TCP and TLS transports. If UDP
is used for the registration, the SIP outbound feature will be silently ignored for the
account.

Default: TRUE

string sipOutboundInstanceId

Specify SIP outbound (RFC 5626) instance ID to be used by this account.

If empty, an instance ID will be generated based on the hostname of this agent. If
application specifies this parameter, the value will look like “<urn:uuid:00000000-
0000-1000-8000-AABBCCDDEEFF>” without the double-quotes.

Default: empty

string sipOutboundRegId

60 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

Specify SIP outbound (RFC 5626) registration ID.

The default value is empty, which would cause the library to automatically generate
a suitable value.

Default: empty

unsigned udpKaIntervalSec

Set the interval for periodic keep-alive transmission for this account.

If this value is zero, keep-alive will be disabled for this account. The keep-alive
transmission will be sent to the registrar’s address, after successful registration.

Default: 15 (seconds)

string udpKaData

Specify the data to be transmitted as keep-alive packets.

Default: CR-LF

AccountMediaConfig

struct pj::AccountMediaConfig
#include <account.hpp>

Account media config (applicable for both audio and video).

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

TransportConfig transportConfig

Media transport (RTP) configuration.

bool lockCodecEnabled

If remote sends SDP answer containing more than one format or codec in the media
line, send re-INVITE or UPDATE with just one codec to lock which codec to use.

Default: True (Yes).

bool streamKaEnabled

5.6. Class Reference 61

PJSUA2 Documentation, Release 1.0-alpha

Specify whether stream keep-alive and NAT hole punching with non-codec-VAD
mechanism (see PJMEDIA_STREAM_ENABLE_KA) is enabled for this account.

Default: False

pjmedia_srtp_use srtpUse

Specify whether secure media transport should be used for this account.

Valid values are PJMEDIA_SRTP_DISABLED, PJMEDIA_SRTP_OPTIONAL, and
PJMEDIA_SRTP_MANDATORY.

Default: PJSUA_DEFAULT_USE_SRTP

int srtpSecureSignaling

Specify whether SRTP requires secure signaling to be used.

This option is only used when use_srtp option above is non-zero.

Valid values are: 0: SRTP does not require secure signaling 1: SRTP requires secure
transport such as TLS 2: SRTP requires secure end-to-end transport (SIPS)

Default: PJSUA_DEFAULT_SRTP_SECURE_SIGNALING

pjsua_ipv6_use ipv6Use

Specify whether IPv6 should be used on media.

Default is not used.

AccountVideoConfig

struct pj::AccountVideoConfig
#include <account.hpp>

Account video config.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

bool autoShowIncoming

62 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

Specify whether incoming video should be shown to screen by default.

This applies to incoming call (INVITE), incoming re-INVITE, and incoming UP-
DATE requests.

Regardless of this setting, application can detect incoming video by implement-
ing on_call_media_state() callback and enumerating the media stream(s) with pj-
sua_call_get_info(). Once incoming video is recognised, application may retrieve
the window associated with the incoming video and show or hide it with pj-
sua_vid_win_set_show().

Default: False

bool autoTransmitOutgoing

Specify whether outgoing video should be activated by default when making outgoing
calls and/or when incoming video is detected.

This applies to incoming and outgoing calls, incoming re-INVITE, and incoming
UPDATE. If the setting is non-zero, outgoing video transmission will be started as
soon as response to these requests is sent (or received).

Regardless of the value of this setting, application can start and stop outgoing video
transmission with pjsua_call_set_vid_strm().

Default: False

unsigned windowFlags

Specify video window’s flags.

The value is a bitmask combination of pjmedia_vid_dev_wnd_flag.

Default: 0

pjmedia_vid_dev_index defaultCaptureDevice

Specify the default capture device to be used by this account.

If vidOutAutoTransmit is enabled, this device will be used for capturing video.

Default: PJMEDIA_VID_DEFAULT_CAPTURE_DEV

pjmedia_vid_dev_index defaultRenderDevice

Specify the default rendering device to be used by this account.

Default: PJMEDIA_VID_DEFAULT_RENDER_DEV

pjmedia_vid_stream_rc_method rateControlMethod

Rate control method.

Default: PJMEDIA_VID_STREAM_RC_SIMPLE_BLOCKING.

unsigned rateControlBandwidth

Upstream/outgoing bandwidth.

If this is set to zero, the video stream will use codec maximum bitrate setting.

Default: 0 (follow codec maximum bitrate).

5.6. Class Reference 63

PJSUA2 Documentation, Release 1.0-alpha

5.6.4 Callback Parameters

struct pj::OnIncomingCallParam
#include <account.hpp>

This structure contains parameters for onIncomingCall() account callback.

Public Members

int callId

The library call ID allocated for the new call.

SipRxData rdata

The incoming INVITE request.

struct pj::OnRegStartedParam
#include <account.hpp>

This structure contains parameters for onRegStarted() account callback.

Public Members

bool renew

True for registration and False for unregistration.

struct pj::OnRegStateParam
#include <account.hpp>

This structure contains parameters for onRegState() account callback.

Public Members

pj_status_t status

Registration operation status.

pjsip_status_code code

SIP status code received.

string reason

SIP reason phrase received.

SipRxData rdata

The incoming message.

int expiration

Next expiration interval.

struct pj::OnIncomingSubscribeParam
#include <account.hpp>

64 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

This structure contains parameters for onIncomingSubscribe() callback.

Public Members

void * srvPres

Server presence subscription instance.

If application delays the acceptance of the request, it will need to specify this object
when calling Account::presNotify().

string fromUri

Sender URI.

SipRxData rdata

The incoming message.

pjsip_status_code code

The status code to respond to the request.

The default value is 200. Application may set this to other final status code to accept
or reject the request.

string reason

The reason phrase to respond to the request.

SipTxOption txOption

Additional data to be sent with the response, if any.

struct pj::OnInstantMessageParam
#include <account.hpp>

Parameters for onInstantMessage() account callback.

Public Members

string fromUri

Sender From URI.

string toUri

To URI of the request.

string contactUri

Contact URI of the sender.

string contentType

MIME type of the message body.

string msgBody

The message body.

SipRxData rdata

The whole message.

5.6. Class Reference 65

PJSUA2 Documentation, Release 1.0-alpha

struct pj::OnInstantMessageStatusParam
#include <account.hpp>

Parameters for onInstantMessageStatus() account callback.

Public Members

Token userData

Token or a user data that was associated with the pager transmission.

string toUri

Destination URI.

string msgBody

The message body.

pjsip_status_code code

The SIP status code of the transaction.

string reason

The reason phrase of the transaction.

SipRxData rdata

The incoming response that causes this callback to be called.

If the transaction fails because of time out or transport error, the content will be empty.

struct pj::OnTypingIndicationParam
#include <account.hpp>

Parameters for onTypingIndication() account callback.

Public Members

string fromUri

Sender/From URI.

string toUri

To URI.

string contactUri

The Contact URI.

bool isTyping

Boolean to indicate if sender is typing.

SipRxData rdata

The whole message buffer.

struct pj::OnMwiInfoParam
#include <account.hpp>

66 Chapter 5. Accounts

PJSUA2 Documentation, Release 1.0-alpha

Parameters for onMwiInfo() account callback.

Public Members

pjsip_evsub_state state

MWI subscription state.

SipRxData rdata

The whole message buffer.

struct pj::PresNotifyParam
#include <account.hpp>

Parameters for presNotify() account method.

Public Members

void * srvPres

Server presence subscription instance.

pjsip_evsub_state state

Server presence subscription state to set.

string stateStr

Optionally specify the state string name, if state is not “active”, “pending”, or “termi-
nated”.

string reason

If the new state is PJSIP_EVSUB_STATE_TERMINATED, optionally specify the
termination reason.

bool withBody

If the new state is PJSIP_EVSUB_STATE_TERMINATED, this specifies whether
the NOTIFY request should contain message body containing account’s presence
information.

SipTxOption txOption

Optional list of headers to be sent with the NOTIFY request.

5.6.5 Other

class pj::FindBuddyMatch

Wrapper class for Buddy matching algo.

Default algo is a simple substring lookup of search-token in the Buddy URIs, with case sensitive. Ap-
plication can implement its own matching algo by overriding this class and specifying its instance in
Account::findBuddy().

Public Functions

bool match(const string & token, const Buddy & buddy)

Default algo implementation.

5.6. Class Reference 67

PJSUA2 Documentation, Release 1.0-alpha

~FindBuddyMatch()

Destructor.

68 Chapter 5. Accounts

CHAPTER

SIX

MEDIA

Media objects are objects that are capable to either produce media or takes media.

An important subclass of Media is AudioMedia which represents audio media. There are several type of audio media
objects supported in PJSUA2:

• Capture device’s AudioMedia, to capture audio from the sound device.

• Playback device’s AudioMedia, to play audio to the sound device.

• Call’s AudioMedia, to transmit and receive audio to/from remote person.

• AudioMediaPlayer, to play WAV file(s).

• AudioMediaRecorder, to record audio to a WAV file.

More media objects may be added in the future.

6.1 The Audio Conference Bridge

The conference bridge provides a simple but yet powerful concept to manage audio flow between the audio medias.
The principle is very simple, that is you connect audio source to audio destination, and the bridge will make the audio
flows from the source to destination, and that’s it. If more than one sources are transmitting to the same destination,
then the audio from the sources will be mixed. If one source is transmitting to more than one destinations, the bridge
will take care of duplicating the audio from the source to the multiple destinations. The bridge will even take care
medias with different clock rates and ptime.

In PJSUA2, all audio media objects are plugged-in to the central conference bridge for easier manipulation. At
first, a plugged-in audio media will not be connected to anything, so media will not flow from/to any objects. An
audio media source can start/stop the transmission to a destination by using the API AudioMedia.startTransmit() /
AudioMedia.stopTransmit().

An audio media object plugged-in to the conference bridge will be given a port ID number that identifies the object in
the bridge. Application can use the API AudioMedia.getPortId() to retrieve the port ID. Normally, application should
not need to worry about the conference bridge and its port ID (as all will be taken care of by the Media class) unless
application want to create its own custom audio media.

6.1.1 Playing a WAV File

To playback the WAV file to the sound device, just start the transmission of the WAV playback object to the sound
device’s playback media:

69

PJSUA2 Documentation, Release 1.0-alpha

AudioMediaPlayer player;
AudioMedia& play_med = Endpoint::instance().audDevManager().getPlaybackDevMedia();
try {

player.createPlayer("file.wav");
player.startTransmit(play_med);

} catch(Error& err) {
}

By default, the WAV file will be played in a loop. To disable the loop, specify PJMEDIA_FILE_NO_LOOP when
creating the player:

player.createPlayer("file.wav", PJMEDIA_FILE_NO_LOOP);

Without looping, silence will be played once the playback has reached the end of the WAV file.

Once you’re done with the playback, just stop the transmission to stop the playback:

try {
player.stopTransmit(play_med);

} catch(Error& err) {
}

Resuming the transmission after the playback is stopped will resume playback from the last play position. Use
player.setPos() to set playback position to a desired location.

6.1.2 Recording to WAV File

Or if you want to record the audio from the sound device to the WAV file, simply do this:

AudioMediaRecorder recorder;
AudioMedia& cap_med = Endpoint::instance().audDevManager().getCaptureDevMedia();
try {

recorder.createRecorder("file.wav");
cap_med.startTransmit(recorder);

} catch(Error& err) {
}

And the media will flow from the sound device to the WAV record file. As usual, to stop or pause recording, just stop
the transmission:

try {
cap_med.stopTransmit(recorder);

} catch(Error& err) {
}

Note that stopping the transmission to the WAV recorder as above does not close the WAV file, and you can resume
recording by connecting a source to the WAV recorder again. You cannot playback the recorded WAV file before you
close it. To close the WAV recorder, simply delete it:

delete recorder;

6.1.3 Local Audio Loopback

A useful test to check whether the local sound device (capture and playback device) is working properly is by trans-
mitting the audio from the capture device directly to the playback device (i.e. local loopback). You can do this by:

70 Chapter 6. Media

PJSUA2 Documentation, Release 1.0-alpha

cap_med.startTransmit(play_med);

6.1.4 Looping Audio

If you want, you can loop the audio of an audio media object to itself (i.e. the audio received from the object will be
transmitted to itself). You can loop-back audio from any objects, as long as the object has bidirectional media. That
means you can loop the call’s audio media, so that audio received from the remote person will be transmitted back to
her/him. But you can’t loop the WAV player or recorder since these objects can only play or record and not both.

6.1.5 Normal Call

A single call can have more than one media (for example, audio and video). Application can retrieve the audio media
by using the API Call.getMedia(). Then for a normal call, we would want to establish bidirectional audio with the
remote person, which can be done easily by connecting the sound device and the call audio media and vice versa:

CallInfo ci = call.getInfo();
AudioMedia *aud_med = NULL;

// Find out which media index is the audio
for (unsigned i=0; i<ci.media.size(); ++i) {

if (ci.media[i].type == PJMEDIA_TYPE_AUDIO) {
aud_med = (AudioMedia *)call.getMedia(i);
break;

}
}

if (aud_med) {
// This will connect the sound device/mic to the call audio media
cap_med.startTransmit(*aud_med);

// And this will connect the call audio media to the sound device/speaker
aud_med->startTransmit(play_med);

}

6.1.6 Second Call

Suppose we want to talk with two remote parties at the same time. Since we already have bidirectional media connec-
tion with one party, we just need to add bidirectional connection with the other party using the code below:

AudioMedia *aud_med2 = (AudioMedia *)call2.getMedia(aud_idx);
if (aud_med2) {

cap_med->startTransmit(*aud_med2);
aud_med2->startTransmit(play_med);

}

Now we can talk to both parties at the same time, and we will hear audio from either party. But at this stage, the remote
parties can’t talk or hear each other (i.e. we’re not in full conference mode yet).

6.1.7 Conference Call

To enable both parties talk to each other, just establish bidirectional media between them:

6.1. The Audio Conference Bridge 71

PJSUA2 Documentation, Release 1.0-alpha

aud_med->startTransmit(*aud_med2);
aud_med2->startTransmit(*aud_med);

Now the three parties (us and both remote parties) will be able to talk to each other.

6.1.8 Recording the Conference

While doing the conference, it perfectly makes sense to want to record the conference to a WAV file, and all we need
to do is to connect the microphone and both calls to the WAV recorder:

cap_med.startTransmit(recorder);
aud_med->startTransmit(recorder);
aud_med2->startTransmit(recorder);

6.2 Audio Device Management

Please see Audio Device Framework below.

6.3 Class Reference

6.3.1 Media Framework

Classes

class pj::Media

Media.

Public Functions

~Media()

Virtual destructor.

pjmedia_type getType()

Get type of the media.

Return

The media type.

class pj::AudioMedia

Audio Media.

Public Functions

ConfPortInfo getPortInfo()

72 Chapter 6. Media

PJSUA2 Documentation, Release 1.0-alpha

Get information about the specified conference port.

int getPortId()

Get port Id.

void startTransmit(const AudioMedia & sink)

Establish unidirectional media flow to sink.

This media port will act as a source, and it may transmit to multiple destinations/sink.
And if multiple sources are transmitting to the same sink, the media will be mixed
together. Source and sink may refer to the same Media, effectively looping the media.

If bidirectional media flow is desired, application needs to call this method twice,
with the second one called from the opposite source media.

Parameters

• sink - The destination Media.

void stopTransmit(const AudioMedia & sink)

Stop media flow to destination/sink port.

Parameters

• sink - The destination media.

void adjustRxLevel(float level)

Adjust the signal level to be transmitted from the bridge to this media port by making
it louder or quieter.

Parameters

• level - Signal level adjustment. Value 1.0 means no level adjustment, while
value 0 means to mute the port.

void adjustTxLevel(float level)

Adjust the signal level to be received from this media port (to the bridge) by making
it louder or quieter.

Parameters

• level - Signal level adjustment. Value 1.0 means no level adjustment, while
value 0 means to mute the port.

unsigned getRxLevel()

6.3. Class Reference 73

PJSUA2 Documentation, Release 1.0-alpha

Get the last received signal level.

Return

Signal level in percent.

unsigned getTxLevel()

Get the last transmitted signal level.

Return

Signal level in percent.

~AudioMedia()

Virtual Destructor.

Public Static Functions

ConfPortInfo getPortInfoFromId(int port_id)

Get information from specific port id.

AudioMedia * typecastFromMedia(Media * media)

Typecast from base class Media.

This is useful for application written in language that does not support downcasting
such as Python.

Return

The object as AudioMedia instance

Parameters

• media - The object to be downcasted

class pj::AudioMediaPlayer

Audio Media Player.

Public Functions

AudioMediaPlayer()

Constructor.

void createPlayer(const string & file_name, unsigned options = 0)

Create a file player, and automatically add this player to the conference bridge.

Parameters

74 Chapter 6. Media

PJSUA2 Documentation, Release 1.0-alpha

• file_name - The filename to be played. Currently only WAV files are sup-
ported, and the WAV file MUST be formatted as 16bit PCM mono/single chan-
nel (any clock rate is supported).

• options - Optional option flag. Application may specify PJME-
DIA_FILE_NO_LOOP to prevent playback loop.

void createPlaylist(const StringVector & file_names, const string & label = “”, unsigned
options = 0)

Create a file playlist media port, and automatically add the port to the conference
bridge.

Parameters

• file_names - Array of file names to be added to the play list. Note that the
files must have the same clock rate, number of channels, and number of bits
per sample.

• label - Optional label to be set for the media port.

• options - Optional option flag. Application may specify PJME-
DIA_FILE_NO_LOOP to prevent looping.

void setPos(pj_uint32_t samples)

Set playback position.

This operation is not valid for playlist.

Parameters

• samples - The desired playback position, in samples.

~AudioMediaPlayer()

Virtual destructor.

Public Static Functions

AudioMediaPlayer * typecastFromAudioMedia(AudioMedia * media)

Typecast from base class AudioMedia.

This is useful for application written in language that does not support downcasting
such as Python.

Return

The object as AudioMediaPlayer instance

Parameters

• media - The object to be downcasted

class pj::AudioMediaRecorder

6.3. Class Reference 75

PJSUA2 Documentation, Release 1.0-alpha

Audio Media Recorder.

Public Functions

AudioMediaRecorder()

Constructor.

void createRecorder(const string & file_name, unsigned enc_type = 0, pj_ssize_t max_size =
0, unsigned options = 0)

Create a file recorder, and automatically connect this recorder to the conference
bridge.

The recorder currently supports recording WAV file. The type of the recorder to use
is determined by the extension of the file (e.g. ”.wav”).

Parameters

• file_name - Output file name. The function will determine the default for-
mat to be used based on the file extension. Currently ”.wav” is supported on
all platforms.

• enc_type - Optionally specify the type of encoder to be used to compress
the media, if the file can support different encodings. This value must be zero
for now.

• max_size - Maximum file size. Specify zero or -1 to remove size limitation.
This value must be zero or -1 for now.

• options - Optional options, which can be used to specify the recording
file format. Supported options are PJMEDIA_FILE_WRITE_PCM, PJME-
DIA_FILE_WRITE_ALAW, and PJMEDIA_FILE_WRITE_ULAW. Default
is zero or PJMEDIA_FILE_WRITE_PCM.

~AudioMediaRecorder()

Virtual destructor.

Public Static Functions

AudioMediaRecorder * typecastFromAudioMedia(AudioMedia * media)

Typecast from base class AudioMedia.

This is useful for application written in language that does not support downcasting
such as Python.

Return

The object as AudioMediaRecorder instance

Parameters

• media - The object to be downcasted

76 Chapter 6. Media

PJSUA2 Documentation, Release 1.0-alpha

Formats and Info

struct pj::MediaFormat
#include <media.hpp>

This structure contains all the information needed to completely describe a media.

Public Members

pj_uint32_t id

The format id that specifies the audio sample or video pixel format.

Some well known formats ids are declared in pjmedia_format_id enumeration.

See

pjmedia_format_id

pjmedia_type type

The top-most type of the media, as an information.

struct pj::MediaFormatAudio
#include <media.hpp>

This structure describe detail information about an audio media.

Public Functions

void fromPj(const pjmedia_format & format)

Construct from pjmedia_format.

pjmedia_format toPj()

Export to pjmedia_format.

Public Members

unsigned clockRate

Audio clock rate in samples or Hz.

unsigned channelCount

Number of channels.

unsigned frameTimeUsec

Frame interval, in microseconds.

unsigned bitsPerSample

Number of bits per sample.

pj_uint32_t avgBps

Average bitrate.

pj_uint32_t maxBps

6.3. Class Reference 77

PJSUA2 Documentation, Release 1.0-alpha

Maximum bitrate.

struct pj::MediaFormatVideo
#include <media.hpp>

This structure describe detail information about an video media.

Public Members

unsigned width

Video width.

unsigned height

Video height.

int fpsNum

Frames per second numerator.

int fpsDenum

Frames per second denumerator.

pj_uint32_t avgBps

Average bitrate.

pj_uint32_t maxBps

Maximum bitrate.

struct pj::ConfPortInfo
#include <media.hpp>

This structure descibes information about a particular media port that has been registered into the confer-
ence bridge.

Public Functions

void fromPj(const pjsua_conf_port_info & port_info)

Construct from pjsua_conf_port_info.

Public Members

int portId

Conference port number.

string name

Port name.

MediaFormatAudio format

Media audio format information.

float txLevelAdj

78 Chapter 6. Media

PJSUA2 Documentation, Release 1.0-alpha

Tx level adjustment.

Value 1.0 means no adjustment, value 0 means the port is muted, value 2.0 means the
level is amplified two times.

float rxLevelAdj

Rx level adjustment.

Value 1.0 means no adjustment, value 0 means the port is muted, value 2.0 means the
level is amplified two times.

IntVector listeners

Array of listeners (in other words, ports where this port is transmitting to.

6.3.2 Audio Device Framework

Device Manager

class pj::AudDevManager

Audio device manager.

Public Functions

int getCaptureDev()

Get currently active capture sound devices.

If sound devices has not been created, it is possible that the function returns -1 as
device IDs.

Return

Device ID of the capture device.

AudioMedia & getCaptureDevMedia()

Get the AudioMedia of the capture audio device.

Return

Audio media for the capture device.

int getPlaybackDev()

Get currently active playback sound devices.

If sound devices has not been created, it is possible that the function returns -1 as
device IDs.

Return

Device ID of the playback device.

AudioMedia & getPlaybackDevMedia()

6.3. Class Reference 79

PJSUA2 Documentation, Release 1.0-alpha

Get the AudioMedia of the speaker/playback audio device.

Return

Audio media for the speaker/playback device.

void setCaptureDev(int capture_dev)

Select or change capture sound device.

Application may call this function at any time to replace current sound device.

Parameters

• capture_dev - Device ID of the capture device.

void setPlaybackDev(int playback_dev)

Select or change playback sound device.

Application may call this function at any time to replace current sound device.

Parameters

• playback_dev - Device ID of the playback device.

const AudioDevInfoVector & enumDev()

Enum all audio devices installed in the system.

Return

The list of audio device info.

void setNullDev()

Set pjsua to use null sound device.

The null sound device only provides the timing needed by the conference bridge, and
will not interract with any hardware.

MediaPort * setNoDev()

Disconnect the main conference bridge from any sound devices, and let application
connect the bridge to it’s own sound device/master port.

Return

The port interface of the conference bridge, so that application can connect this
to it’s own sound device or master port.

void setEcOptions(unsigned tail_msec, unsigned options)

80 Chapter 6. Media

PJSUA2 Documentation, Release 1.0-alpha

Change the echo cancellation settings.

The behavior of this function depends on whether the sound device is currently active,
and if it is, whether device or software AEC is being used.

If the sound device is currently active, and if the device supports AEC, this function
will forward the change request to the device and it will be up to the device on whether
support the request. If software AEC is being used (the software EC will be used if
the device does not support AEC), this function will change the software EC settings.
In all cases, the setting will be saved for future opening of the sound device.

If the sound device is not currently active, this will only change the default AEC
settings and the setting will be applied next time the sound device is opened.

Parameters

• tail_msec - The tail length, in miliseconds. Set to zero to disable AEC.

• options - Options to be passed to pjmedia_echo_create(). Normally the
value should be zero.

unsigned getEcTail()

Get current echo canceller tail length.

Return

The EC tail length in milliseconds, If AEC is disabled, the value will be zero.

bool sndIsActive()

Check whether the sound device is currently active.

The sound device may be inactive if the application has set the auto close feature to
non-zero (the sndAutoCloseTime setting in MediaConfig), or if null sound device or
no sound device has been configured via the setNoDev() function.

void refreshDevs()

Refresh the list of sound devices installed in the system.

This method will only refresh the list of audio device so all active audio streams
will be unaffected. After refreshing the device list, application MUST make sure to
update all index references to audio devices before calling any method that accepts
audio device index as its parameter.

unsigned getDevCount()

Get the number of sound devices installed in the system.

Return

The number of sound devices installed in the system.

6.3. Class Reference 81

PJSUA2 Documentation, Release 1.0-alpha

AudioDevInfo getDevInfo(int id)

Get device information.

Return

The device information which will be filled in by this method once it returns
successfully.

Parameters

• id - The audio device ID.

int lookupDev(const string & drv_name, const string & dev_name)

Lookup device index based on the driver and device name.

Return

The device ID. If the device is not found, Error will be thrown.

Parameters

• drv_name - The driver name.

• dev_name - The device name.

string capName(pjmedia_aud_dev_cap cap)

Get string info for the specified capability.

Return

Capability name.

Parameters

• cap - The capability ID.

void setExtFormat(const MediaFormatAudio & format, bool keep = true)

This will configure audio format capability (other than PCM) to the sound device
being used.

If sound device is currently active, the method will forward the setting to the sound
device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_EXT_FORMAT capability in AudioDevInfo.caps flags,
otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any devices,
even when application has changed the sound device to be used.

Parameters

• format - The audio format.

82 Chapter 6. Media

PJSUA2 Documentation, Release 1.0-alpha

• keep - Specify whether the setting is to be kept for future use.

MediaFormatAudio getExtFormat()

Get the audio format capability (other than PCM) of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_EXT_FORMAT capability in AudioDevInfo.caps flags,
otherwise Error will be thrown.

Return

The audio format.

void setInputLatency(unsigned latency_msec, bool keep = true)

This will configure audio input latency control or query capability to the sound device
being used.

If sound device is currently active, the method will forward the setting to the sound
device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_LATENCY capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any devices,
even when application has changed the sound device to be used.

Parameters

• latency_msec - The input latency.

• keep - Specify whether the setting is to be kept for future use.

unsigned getInputLatency()

Get the audio input latency control or query capability of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_LATENCY capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

Return

The audio input latency.

6.3. Class Reference 83

PJSUA2 Documentation, Release 1.0-alpha

void setOutputLatency(unsigned latency_msec, bool keep = true)

This will configure audio output latency control or query capability to the sound
device being used.

If sound device is currently active, the method will forward the setting to the sound
device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_LATENCY capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any devices,
even when application has changed the sound device to be used.

Parameters

• latency_msec - The output latency.

• keep - Specify whether the setting is to be kept for future use.

unsigned getOutputLatency()

Get the audio output latency control or query capability of the sound device being
used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_LATENCY capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

Return

The audio output latency.

void setInputVolume(unsigned volume, bool keep = true)

This will configure audio input volume level capability to the sound device being
used.

If sound device is currently active, the method will forward the setting to the sound
device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_VOLUME_SETTING capability in AudioDev-
Info.caps flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any devices,
even when application has changed the sound device to be used.

Parameters

• volume - The input volume level, in percent.

84 Chapter 6. Media

PJSUA2 Documentation, Release 1.0-alpha

• keep - Specify whether the setting is to be kept for future use.

unsigned getInputVolume()

Get the audio input volume level capability of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_VOLUME_SETTING capability in AudioDev-
Info.caps flags, otherwise Error will be thrown. *

Return

The audio input volume level, in percent.

void setOutputVolume(unsigned volume, bool keep = true)

This will configure audio output volume level capability to the sound device being
used.

If sound device is currently active, the method will forward the setting to the sound
device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_VOLUME_SETTING capability in AudioDev-
Info.caps flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any devices,
even when application has changed the sound device to be used.

Parameters

• volume - The output volume level, in percent.

• keep - Specify whether the setting is to be kept for future use.

unsigned getOutputVolume()

Get the audio output volume level capability of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_VOLUME_SETTING capability in AudioDev-
Info.caps flags, otherwise Error will be thrown.

Return

The audio output volume level, in percent.

6.3. Class Reference 85

PJSUA2 Documentation, Release 1.0-alpha

unsigned getInputSignal()

Get the audio input signal level capability of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_SIGNAL_METER capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

Return

The audio input signal level, in percent.

unsigned getOutputSignal()

Get the audio output signal level capability of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_SIGNAL_METER capability in AudioDev-
Info.caps flags, otherwise Error will be thrown.

Return

The audio output signal level, in percent.

void setInputRoute(pjmedia_aud_dev_route route, bool keep = true)

This will configure audio input route capability to the sound device being used.

If sound device is currently active, the method will forward the setting to the sound
device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_ROUTE capability in AudioDevInfo.caps flags,
otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any devices,
even when application has changed the sound device to be used.

Parameters

• route - The audio input route.

• keep - Specify whether the setting is to be kept for future use.

pjmedia_aud_dev_route getInputRoute()

86 Chapter 6. Media

PJSUA2 Documentation, Release 1.0-alpha

Get the audio input route capability of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_ROUTE capability in AudioDevInfo.caps flags,
otherwise Error will be thrown.

Return

The audio input route.

void setOutputRoute(pjmedia_aud_dev_route route, bool keep = true)

This will configure audio output route capability to the sound device being used.

If sound device is currently active, the method will forward the setting to the sound
device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_ROUTE capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any devices,
even when application has changed the sound device to be used.

Parameters

• route - The audio output route.

• keep - Specify whether the setting is to be kept for future use.

pjmedia_aud_dev_route getOutputRoute()

Get the audio output route capability of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_ROUTE capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

Return

The audio output route.

void setVad(bool enable, bool keep = true)

This will configure audio voice activity detection capability to the sound device being
used.

6.3. Class Reference 87

PJSUA2 Documentation, Release 1.0-alpha

If sound device is currently active, the method will forward the setting to the sound
device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJMEDIA_AUD_DEV_CAP_VAD capa-
bility in AudioDevInfo.caps flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any devices,
even when application has changed the sound device to be used.

Parameters

• enable - Enable/disable voice activity detection feature. Set true to enable.

• keep - Specify whether the setting is to be kept for future use.

bool getVad()

Get the audio voice activity detection capability of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJMEDIA_AUD_DEV_CAP_VAD capa-
bility in AudioDevInfo.caps flags, otherwise Error will be thrown.

Return

The audio voice activity detection feature.

void setCng(bool enable, bool keep = true)

This will configure audio comfort noise generation capability to the sound device
being used.

If sound device is currently active, the method will forward the setting to the sound
device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJMEDIA_AUD_DEV_CAP_CNG capa-
bility in AudioDevInfo.caps flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any devices,
even when application has changed the sound device to be used.

Parameters

• enable - Enable/disable comfort noise generation feature. Set true to enable.

• keep - Specify whether the setting is to be kept for future use.

bool getCng()

Get the audio comfort noise generation capability of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the

88 Chapter 6. Media

PJSUA2 Documentation, Release 1.0-alpha

setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJMEDIA_AUD_DEV_CAP_CNG capa-
bility in AudioDevInfo.caps flags, otherwise Error will be thrown.

Return

The audio comfort noise generation feature.

void setPlc(bool enable, bool keep = true)

This will configure audio packet loss concealment capability to the sound device
being used.

If sound device is currently active, the method will forward the setting to the sound
device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJMEDIA_AUD_DEV_CAP_PLC capa-
bility in AudioDevInfo.caps flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any devices,
even when application has changed the sound device to be used.

Parameters

• enable - Enable/disable packet loss concealment feature. Set true to enable.

• keep - Specify whether the setting is to be kept for future use.

bool getPlc()

Get the audio packet loss concealment capability of the sound device being used.

If sound device is currently active, the method will forward the request to the sound
device. If sound device is currently inactive, and if application had previously set the
setting and mark the setting as kept, then that setting will be returned. Otherwise, this
method will raise error.

This method is only valid if the device has PJMEDIA_AUD_DEV_CAP_PLC capa-
bility in AudioDevInfo.caps flags, otherwise Error will be thrown.

Return

The audio packet loss concealment feature.

Device Info

struct pj::AudioDevInfo
#include <media.hpp>

Audio device information structure.

Public Functions

void fromPj(const pjmedia_aud_dev_info & dev_info)

Construct from pjmedia_aud_dev_info.

6.3. Class Reference 89

PJSUA2 Documentation, Release 1.0-alpha

~AudioDevInfo()

Destructor.

Public Members

string name

The device name.

unsigned inputCount

Maximum number of input channels supported by this device.

If the value is zero, the device does not support input operation (i.e. it is a playback
only device).

unsigned outputCount

Maximum number of output channels supported by this device.

If the value is zero, the device does not support output operation (i.e. it is an input
only device).

unsigned defaultSamplesPerSec

Default sampling rate.

string driver

The underlying driver name.

unsigned caps

Device capabilities, as bitmask combination of pjmedia_aud_dev_cap.

unsigned routes

Supported audio device routes, as bitmask combination of pjmedia_aud_dev_route.

The value may be zero if the device does not support audio routing.

MediaFormatVector extFmt

Array of supported extended audio formats.

90 Chapter 6. Media

CHAPTER

SEVEN

CALLS

Calls are represented by Call class.

7.1 Subclassing the Call Class

To use the Call class, normally application SHOULD create its own subclass, such as:

class MyCall : public Call
{
public:

MyCall(Account &acc, int call_id = PJSUA_INVALID_ID)
: Call(acc, call_id)
{ }

~MyCall()
{ }

// Notification when call’s state has changed.
virtual void onCallState(OnCallStateParam &prm);

// Notification when call’s media state has changed.
virtual void onCallMediaState(OnCallMediaStateParam &prm);

};

In its subclass, application can implement the call callbacks, which is basically used to process events related to the
call, such as call state change or incoming call transfer request.

7.2 Making Outgoing Calls

Making outgoing call is simple, just invoke makeCall() method of the Call object. Assuming you have the Account
object as acc variable and destination URI string in dest_uri, you can initiate outgoing call with the snippet below:

Call *call = new MyCall(*acc);
CallOpParam prm(true); // Use default call settings
try {

call->makeCall(dest_uri, prm);
} catch(Error& err) {

cout << err.info() << endl;
}

91

PJSUA2 Documentation, Release 1.0-alpha

The snippet above creates a Call object and initiates outgoing call to dest_uri using the default call settings. Subsequent
operations to the call can use the method in the call instance, and events to the call will be reported to the callback.
More on the callback will be explained a bit later.

7.3 Receiving Incoming Calls

Incoming calls are reported as onIncomingCall() of the Account class. You must derive a class from the Account class
to handle incoming calls.

Below is a sample code of the callback implementation:

void MyAccount::onIncomingCall(OnIncomingCallParam &iprm)
{

Call *call = new MyCall(*this, iprm.callId);
CallOpParam prm;
prm.statusCode = PJSIP_SC_OK;
call->answer(prm);

}

For incoming calls, the call instance is created in the callback function as shown above. Application should make sure
to store the call instance during the lifetime of the call (that is until the call is disconnected).

7.4 Call Properties

All call properties such as state, media state, remote peer information, etc. are stored as CallInfo class, which can be
retrieved from the call object with using getInfo() method of the Call.

7.5 Call Disconnection

Call disconnection event is a special event since once the callback that reports this event returns, the call is no longer
valid and any operations invoked to the call object will raise error exception. Thus, it is recommended to delete the
call object inside the callback.

The call disconnection is reported in onCallState() method of Call and it can be detected as follows:

void MyCall::onCallState(OnCallStateParam &prm)
{

CallInfo ci = getInfo();
if (ci.state == PJSIP_INV_STATE_DISCONNECTED) {

/* Delete the call */
delete this;

}
}

7.6 Working with Call’s Audio Media

You can only operate with the call’s audio media (e.g. connecting the call to the sound device in the conference bridge)
when the call’s audio media is ready (or active). The changes to the call’s media state is reported in onCallMediaState()
callback, and if the calls audio media is ready (or active) the function Call.getMedia() will return a valid audio media.

Below is a sample code to connect the call to the sound device when the media is active:

92 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

void MyCall::onCallMediaState(OnCallMediaStateParam &prm)
{

CallInfo ci = getInfo();
// Iterate all the call medias
for (unsigned i = 0; i < ci.media.size(); i++) {

if (ci.media[i].type==PJMEDIA_TYPE_AUDIO && getMedia(i)) {
AudioMedia *aud_med = (AudioMedia *)getMedia(i);

// Connect the call audio media to sound device
AudDevManager& mgr = Endpoint::instance().audDevManager();
aud_med->startTransmit(mgr.getPlaybackDevMedia());
mgr.getCaptureDevMedia().startTransmit(*aud_med);

}
}

}

When the audio media becomes inactive (for example when the call is put on hold), there is no need to stop the audio
media’s transmission to/from the sound device since the call’s audio media will be removed automatically from the
conference bridge when it’s no longer valid, and this will automatically remove all connections to/from the call.

7.7 Call Operations

You can invoke operations to the Call object, such as hanging up, putting the call on hold, sending re-INVITE, etc.
Please see the reference documentation of Call for more info.

7.8 Instant Messaging(IM)

You can send IM within a call using Call.sendInstantMessage(). The transmission status of outgoing instant messages
is reported in Call.onInstantMessageStatus() callback method.

In addition to sending instant messages, you can also send typing indication using Call.sendTypingIndication().

Incoming IM and typing indication received within a call will be reported in the callback functions
Call.onInstantMessage() and Call.onTypingIndication().

Alternatively, you can send IM and typing indication outside a call by using Buddy.sendInstantMessage() and
Buddy.sendTypingIndication(). For more information, please see Presence documentation.

7.9 Class Reference

7.9.1 Call

class pj::Call

Call.

Public Functions

Call(Account & acc, int call_id = PJSUA_INVALID_ID)

Constructor.

7.7. Call Operations 93

PJSUA2 Documentation, Release 1.0-alpha

~Call()

Destructor.

CallInfo getInfo()

Obtain detail information about this call.

Return

Call info.

bool isActive()

Check if this call has active INVITE session and the INVITE session has not been
disconnected.

Return

True if call is active.

int getId()

Get PJSUA-LIB call ID or index associated with this call.

Return

Integer greater than or equal to zero.

bool hasMedia()

Check if call has an active media session.

Return

True if yes.

Media * getMedia(unsigned med_idx)

Get media for the specified media index.

Return

The media or NULL if invalid or inactive.

Parameters

• med_idx - Media index.

pjsip_dialog_cap_status remoteHasCap(int htype, const string & hname, const string &
token)

94 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

Check if remote peer support the specified capability.

Return

PJSIP_DIALOG_CAP_SUPPORTED if the specified capability is explicitly
supported, see pjsip_dialog_cap_status for more info.

Parameters

• htype - The header type (pjsip_hdr_e) to be checked, which value may be:

• hname - If htype specifies PJSIP_H_OTHER, then the header name must be
supplied in this argument. Otherwise the value must be set to empty string
(“”).

• token - The capability token to check. For example, if htype is
PJSIP_H_ALLOW, then token specifies the method names; if htype is
PJSIP_H_SUPPORTED, then token specifies the extension names such as
“100rel”.

void setUserData(Token user_data)

Attach application specific data to the call.

Application can then inspect this data by calling getUserData().

Parameters

• user_data - Arbitrary data to be attached to the call.

Token getUserData()

Get user data attached to the call, which has been previously set with setUserData().

Return

The user data.

pj_stun_nat_type getRemNatType()

Get the NAT type of remote’s endpoint.

This is a proprietary feature of PJSUA-LIB which sends its NAT type in the SDP
when natTypeInSdp is set in UaConfig.

This function can only be called after SDP has been received from remote, which
means for incoming call, this function can be called as soon as call is received as
long as incoming call contains SDP, and for outgoing call, this function can be called
only after SDP is received (normally in 200/OK response to INVITE). As a general
case, application should call this function after or in onCallMediaState() callback.

Return

The NAT type.

See

Endpoint::natGetType(), natTypeInSdp

7.9. Class Reference 95

PJSUA2 Documentation, Release 1.0-alpha

void makeCall(const string & dst_uri, const CallOpParam & prm)

Make outgoing call to the specified URI.

Parameters

• dst_uri - URI to be put in the To header (normally is the same as the target
URI).

• prm.opt - Optional call setting.

• prm.txOption - Optional headers etc to be added to outgoing INVITE re-
quest.

void answer(const CallOpParam & prm)

Send response to incoming INVITE request with call setting param.

Depending on the status code specified as parameter, this function may send provi-
sional response, establish the call, or terminate the call. Notes about call setting:

Parameters

• prm.opt - Optional call setting.

• prm.statusCode - Status code, (100-699).

• prm.reason - Optional reason phrase. If empty, default text will be used.

• prm.txOption - Optional list of headers etc to be added to outgoing re-
sponse message. Note that this message data will be persistent in all next
answers/responses for this INVITE request.

void hangup(const CallOpParam & prm)

Hangup call by using method that is appropriate according to the call state.

This function is different than answering the call with 3xx-6xx response (with an-
swer()), in that this function will hangup the call regardless of the state and role of
the call, while answer() only works with incoming calls on EARLY state.

Parameters

• prm.statusCode - Optional status code to be sent when we’re rejecting
incoming call. If the value is zero, “603/Decline” will be sent.

• prm.reason - Optional reason phrase to be sent when we’re rejecting in-
coming call. If empty, default text will be used.

• prm.txOption - Optional list of headers etc to be added to outgoing re-
quest/response message.

void setHold(const CallOpParam & prm)

Put the specified call on hold.

96 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

This will send re-INVITE with the appropriate SDP to inform remote that the call
is being put on hold. The final status of the request itself will be reported on the
onCallMediaState() callback, which inform the application that the media state of the
call has changed.

Parameters

• prm.options - Bitmask of pjsua_call_flag constants. Currently, only the
flag PJSUA_CALL_UPDATE_CONTACT can be used.

• prm.txOption - Optional message components to be sent with the request.

void reinvite(const CallOpParam & prm)

Send re-INVITE to release hold.

The final status of the request itself will be reported on the onCallMediaState() call-
back, which inform the application that the media state of the call has changed.

Parameters

• prm.opt - Optional call setting, if empty, the current call setting will remain
unchanged.

• prm.txOption - Optional message components to be sent with the request.

void update(const CallOpParam & prm)

Send UPDATE request.

Parameters

• prm.opt - Optional call setting, if empty, the current call setting will remain
unchanged.

• prm.txOption - Optional message components to be sent with the request.

void xfer(const string & dest, const CallOpParam & prm)

Initiate call transfer to the specified address.

This function will send REFER request to instruct remote call party to initiate a new
INVITE session to the specified destination/target.

If application is interested to monitor the successfulness and the progress of the trans-
fer request, it can implement onCallTransferStatus() callback which will report the
progress of the call transfer request.

Parameters

• dest - URI of new target to be contacted. The URI may be in name address
or addr-spec format.

• prm.txOption - Optional message components to be sent with the request.

void xferReplaces(const Call & dest_call, const CallOpParam & prm)

7.9. Class Reference 97

PJSUA2 Documentation, Release 1.0-alpha

Initiate attended call transfer.

This function will send REFER request to instruct remote call party to initiate new
INVITE session to the URL of destCall. The party at dest_call then should “replace”
the call with us with the new call from the REFER recipient.

Parameters

• dest_call - The call to be replaced.

• prm.options - Application may specify PJ-
SUA_XFER_NO_REQUIRE_REPLACES to suppress the inclusion of
“Require: replaces” in the outgoing INVITE request created by the REFER
request.

• prm.txOption - Optional message components to be sent with the request.

void processRedirect(pjsip_redirect_op cmd)

Accept or reject redirection response.

Application MUST call this function after it signaled PJSIP_REDIRECT_PENDING
in the onCallRedirected() callback, to notify the call whether to accept or re-
ject the redirection to the current target. Application can use the combination of
PJSIP_REDIRECT_PENDING command in onCallRedirected() callback and this
function to ask for user permission before redirecting the call.

Note that if the application chooses to reject or stop redirection (by using
PJSIP_REDIRECT_REJECT or PJSIP_REDIRECT_STOP respectively), the call
disconnection callback will be called before this function returns. And if the ap-
plication rejects the target, the onCallRedirected() callback may also be called before
this function returns if there is another target to try.

Parameters

• cmd - Redirection operation to be applied to the current target. The semantic of
this argument is similar to the description in the onCallRedirected() callback,
except that the PJSIP_REDIRECT_PENDING is not accepted here.

void dialDtmf(const string & digits)

Send DTMF digits to remote using RFC 2833 payload formats.

Parameters

• digits - DTMF string digits to be sent.

void sendInstantMessage(const SendInstantMessageParam & prm)

Send instant messaging inside INVITE session.

Parameters

• prm.contentType - MIME type.

• prm.content - The message content.

98 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

• prm.txOption - Optional list of headers etc to be included in outgoing
request. The body descriptor in the txOption is ignored.

• prm.userData - Optional user data, which will be given back when the IM
callback is called.

void sendTypingIndication(const SendTypingIndicationParam & prm)

Send IM typing indication inside INVITE session.

Parameters

• prm.isTyping - True to indicate to remote that local person is currently
typing an IM.

• prm.txOption - Optional list of headers etc to be included in outgoing
request.

void sendRequest(const CallSendRequestParam & prm)

Send arbitrary request with the call.

This is useful for example to send INFO request. Note that application should not use
this function to send requests which would change the invite session’s state, such as
re-INVITE, UPDATE, PRACK, and BYE.

Parameters

• prm.method - SIP method of the request.

• prm.txOption - Optional message body and/or list of headers to be in-
cluded in outgoing request.

string dump(bool with_media, const string indent)

Dump call and media statistics to string.

Return

Call dump and media statistics string.

Parameters

• with_media - True to include media information too.

• indent - Spaces for left indentation.

int vidGetStreamIdx()

Get the media stream index of the default video stream in the call.

Typically this will just retrieve the stream index of the first activated video stream in
the call. If none is active, it will return the first inactive video stream.

7.9. Class Reference 99

PJSUA2 Documentation, Release 1.0-alpha

Return

The media stream index or -1 if no video stream is present in the call.

bool vidStreamIsRunning(int med_idx, pjmedia_dir dir)

Determine if video stream for the specified call is currently running (i.e.

has been created, started, and not being paused) for the specified direction.

Return

True if stream is currently running for the specified direction.

Parameters

• med_idx - Media stream index, or -1 to specify default video media.

• dir - The direction to be checked.

void vidSetStream(pjsua_call_vid_strm_op op, const CallVidSetStreamParam & param)

Add, remove, modify, and/or manipulate video media stream for the specified call.

This may trigger a re-INVITE or UPDATE to be sent for the call.

Parameters

• op - The video stream operation to be performed, possible values are pj-
sua_call_vid_strm_op.

• param - The parameters for the video stream operation (see CallVidSet-
StreamParam).

StreamInfo getStreamInfo(unsigned med_idx)

Get media stream info for the specified media index.

Return

The stream info.

Parameters

• med_idx - Media stream index.

StreamStat getStreamStat(unsigned med_idx)

Get media stream statistic for the specified media index.

Return

The stream statistic.

Parameters

• med_idx - Media stream index.

100 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

MediaTransportInfo getMedTransportInfo(unsigned med_idx)

Get media transport info for the specified media index.

Return

The transport info.

Parameters

• med_idx - Media stream index.

void processMediaUpdate(OnCallMediaStateParam & prm)

Internal function (callled by Endpoint(to process update to call medias when call
media state changes.

void processStateChange(OnCallStateParam & prm)

Internal function (called by Endpoint) to process call state change.

void onCallState(OnCallStateParam & prm)

Notify application when call state has changed.

Application may then query the call info to get the detail call states by calling get-
Info() function.

Parameters

• prm - Callback parameter.

void onCallTsxState(OnCallTsxStateParam & prm)

This is a general notification callback which is called whenever a transaction within
the call has changed state.

Application can implement this callback for example to monitor the state of outgo-
ing requests, or to answer unhandled incoming requests (such as INFO) with a final
response.

Parameters

• prm - Callback parameter.

void onCallMediaState(OnCallMediaStateParam & prm)

Notify application when media state in the call has changed.

7.9. Class Reference 101

PJSUA2 Documentation, Release 1.0-alpha

Normal application would need to implement this callback, e.g. to connect the call’s
media to sound device. When ICE is used, this callback will also be called to report
ICE negotiation failure.

Parameters

• prm - Callback parameter.

void onCallSdpCreated(OnCallSdpCreatedParam & prm)

Notify application when a call has just created a local SDP (for initial or subsequent
SDP offer/answer).

Application can implement this callback to modify the SDP, before it is being sent
and/or negotiated with remote SDP, for example to apply per account/call basis
codecs priority or to add custom/proprietary SDP attributes.

Parameters

• prm - Callback parameter.

void onStreamCreated(OnStreamCreatedParam & prm)

Notify application when media session is created and before it is registered to the
conference bridge.

Application may return different media port if it has added media processing port to
the stream. This media port then will be added to the conference bridge instead.

Parameters

• prm - Callback parameter.

void onStreamDestroyed(OnStreamDestroyedParam & prm)

Notify application when media session has been unregistered from the conference
bridge and about to be destroyed.

Parameters

• prm - Callback parameter.

void onDtmfDigit(OnDtmfDigitParam & prm)

Notify application upon incoming DTMF digits.

Parameters

• prm - Callback parameter.

void onCallTransferRequest(OnCallTransferRequestParam & prm)

102 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

Notify application on call being transferred (i.e.

REFER is received). Application can decide to accept/reject transfer request by set-
ting the code (default is 202). When this callback is not implemented, the default
behavior is to accept the transfer.

Parameters

• prm - Callback parameter.

void onCallTransferStatus(OnCallTransferStatusParam & prm)

Notify application of the status of previously sent call transfer request.

Application can monitor the status of the call transfer request, for example to decide
whether to terminate existing call.

Parameters

• prm - Callback parameter.

void onCallReplaceRequest(OnCallReplaceRequestParam & prm)

Notify application about incoming INVITE with Replaces header.

Application may reject the request by setting non-2xx code.

Parameters

• prm - Callback parameter.

void onCallReplaced(OnCallReplacedParam & prm)

Notify application that an existing call has been replaced with a new call.

This happens when PJSUA-API receives incoming INVITE request with Replaces
header.

After this callback is called, normally PJSUA-API will disconnect this call and es-
tablish a new call newCallId.

Parameters

• prm - Callback parameter.

void onCallRxOffer(OnCallRxOfferParam & prm)

Notify application when call has received new offer from remote (i.e.

re-INVITE/UPDATE with SDP is received). Application can decide to accept/reject
the offer by setting the code (default is 200). If the offer is accepted, application
can update the call setting to be applied in the answer. When this callback is not
implemented, the default behavior is to accept the offer using current call setting.

Parameters

7.9. Class Reference 103

PJSUA2 Documentation, Release 1.0-alpha

• prm - Callback parameter.

void onInstantMessage(OnInstantMessageParam & prm)

Notify application on incoming MESSAGE request.

Parameters

• prm - Callback parameter.

void onInstantMessageStatus(OnInstantMessageStatusParam & prm)

Notify application about the delivery status of outgoing MESSAGE request.

Parameters

• prm - Callback parameter.

void onTypingIndication(OnTypingIndicationParam & prm)

Notify application about typing indication.

Parameters

• prm - Callback parameter.

pjsip_redirect_op onCallRedirected(OnCallRedirectedParam & prm)

This callback is called when the call is about to resend the INVITE request to the
specified target, following the previously received redirection response.

Application may accept the redirection to the specified target, reject this target only
and make the session continue to try the next target in the list if such target exists, stop
the whole redirection process altogether and cause the session to be disconnected, or
defer the decision to ask for user confirmation.

This callback is optional, the default behavior is to NOT follow the redirection re-
sponse.

Return

Action to be performed for the target. Set this parameter to one of the value
below:

Parameters

• prm - Callback parameter.

void onCallMediaTransportState(OnCallMediaTransportStateParam & prm)

This callback is called when media transport state is changed.

Parameters

104 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

• prm - Callback parameter.

void onCallMediaEvent(OnCallMediaEventParam & prm)

Notification about media events such as video notifications.

This callback will most likely be called from media threads, thus application must not
perform heavy processing in this callback. Especially, application must not destroy
the call or media in this callback. If application needs to perform more complex tasks
to handle the event, it should post the task to another thread.

Parameters

• prm - Callback parameter.

void onCreateMediaTransport(OnCreateMediaTransportParam & prm)

This callback can be used by application to implement custom media transport
adapter for the call, or to replace the media transport with something completely
new altogether.

This callback is called when a new call is created. The library has created a media
transport for the call, and it is provided as the mediaTp argument of this callback. The
callback may change it with the instance of media transport to be used by the call.

Parameters

• prm - Callback parameter.

Public Static Functions

Call * lookup(int call_id)

Get the Call class for the specified call Id.

Return

The Call instance or NULL if not found.

Parameters

• call_id - The call ID to lookup

7.9.2 Settings

struct pj::CallSetting
#include <call.hpp>

Call settings.

Public Functions

CallSetting(pj_bool_t useDefaultValues = false)

Default constructor initializes with empty or default values.

7.9. Class Reference 105

PJSUA2 Documentation, Release 1.0-alpha

bool isEmpty()

Check if the settings are set with empty values.

Return

True if the settings are empty.

void fromPj(const pjsua_call_setting & prm)

Convert from pjsip.

pjsua_call_setting toPj()

Convert to pjsip.

Public Members

unsigned flag

Bitmask of pjsua_call_flag constants.

Default: PJSUA_CALL_INCLUDE_DISABLED_MEDIA

unsigned reqKeyframeMethod

This flag controls what methods to request keyframe are allowed on the call.

Value is bitmask of pjsua_vid_req_keyframe_method.

Default: PJSUA_VID_REQ_KEYFRAME_SIP_INFO | PJ-
SUA_VID_REQ_KEYFRAME_RTCP_PLI

unsigned audioCount

Number of simultaneous active audio streams for this call.

Setting this to zero will disable audio in this call.

Default: 1

unsigned videoCount

Number of simultaneous active video streams for this call.

Setting this to zero will disable video in this call.

Default: 1 (if video feature is enabled, otherwise it is zero)

7.9.3 Info and Statistics

struct pj::CallInfo
#include <call.hpp>

Call information.

Application can query the call information by calling Call::getInfo().

Public Functions

106 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

void fromPj(const pjsua_call_info & pci)

Convert from pjsip.

Public Members

pjsua_call_id id

Call identification.

pjsip_role_e role

Initial call role (UAC == caller)

pjsua_acc_id accId

The account ID where this call belongs.

string localUri

Local URI.

string localContact

Local Contact.

string remoteUri

Remote URI.

string remoteContact

Remote contact.

string callIdString

Dialog Call-ID string.

CallSetting setting

Call setting.

pjsip_inv_state state

Call state.

string stateText

Text describing the state.

pjsip_status_code lastStatusCode

Last status code heard, which can be used as cause code.

string lastReason

The reason phrase describing the last status.

CallMediaInfoVector media

Array of active media information.

CallMediaInfoVector provMedia

Array of provisional media information.

This contains the media info in the provisioning state, that is when the media session
is being created/updated (SDP offer/answer is on progress).

TimeVal connectDuration

7.9. Class Reference 107

PJSUA2 Documentation, Release 1.0-alpha

Up-to-date call connected duration (zero when call is not established)

TimeVal totalDuration

Total call duration, including set-up time.

bool remOfferer

Flag if remote was SDP offerer.

unsigned remAudioCount

Number of audio streams offered by remote.

unsigned remVideoCount

Number of video streams offered by remote.

struct pj::CallMediaInfo
#include <call.hpp>

Call media information.

Public Functions

CallMediaInfo()

Default constructor.

void fromPj(const pjsua_call_media_info & prm)

Convert from pjsip.

Public Members

unsigned index

Media index in SDP.

pjmedia_type type

Media type.

pjmedia_dir dir

Media direction.

pjsua_call_media_status status

Call media status.

int audioConfSlot

The conference port number for the call.

Only valid if the media type is audio.

pjsua_vid_win_id videoIncomingWindowId

The window id for incoming video, if any, or PJSUA_INVALID_ID.

Only valid if the media type is video.

pjmedia_vid_dev_index videoCapDev

108 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

The video capture device for outgoing transmission, if any, or PJME-
DIA_VID_INVALID_DEV.

Only valid if the media type is video.

struct pj::StreamInfo
#include <call.hpp>

Media stream info.

Public Functions

void fromPj(const pjsua_stream_info & info)

Convert from pjsip.

Public Members

pjmedia_type type

Media type of this stream.

pjmedia_tp_proto proto

Transport protocol (RTP/AVP, etc.)

pjmedia_dir dir

Media direction.

SocketAddress remoteRtpAddress

Remote RTP address.

SocketAddress remoteRtcpAddress

Optional remote RTCP address.

unsigned txPt

Outgoing codec payload type.

unsigned rxPt

Incoming codec payload type.

string codecName

Codec name.

unsigned codecClockRate

Codec clock rate.

CodecParam codecParam

Optional codec param.

struct pj::StreamStat
#include <call.hpp>

Media stream statistic.

Public Functions

7.9. Class Reference 109

PJSUA2 Documentation, Release 1.0-alpha

void fromPj(const pjsua_stream_stat & prm)

Convert from pjsip.

Public Members

RtcpStat rtcp

RTCP statistic.

JbufState jbuf

Jitter buffer statistic.

struct pj::JbufState
#include <call.hpp>

This structure describes jitter buffer state.

Public Functions

void fromPj(const pjmedia_jb_state & prm)

Convert from pjsip.

Public Members

unsigned frameSize

Individual frame size, in bytes.

unsigned minPrefetch

Minimum allowed prefetch, in frms.

unsigned maxPrefetch

Maximum allowed prefetch, in frms.

unsigned burst

Current burst level, in frames.

unsigned prefetch

Current prefetch value, in frames.

unsigned size

Current buffer size, in frames.

unsigned avgDelayMsec

Average delay, in ms.

unsigned minDelayMsec

Minimum delay, in ms.

unsigned maxDelayMsec

Maximum delay, in ms.

unsigned devDelayMsec

Standard deviation of delay, in ms.

unsigned avgBurst

110 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

Average burst, in frames.

unsigned lost

Number of lost frames.

unsigned discard

Number of discarded frames.

unsigned empty

Number of empty on GET events.

struct pj::RtcpStat
#include <call.hpp>

Bidirectional RTP stream statistics.

Public Functions

void fromPj(const pjmedia_rtcp_stat & prm)

Convert from pjsip.

Public Members

TimeVal start

Time when session was created.

RtcpStreamStat txStat

Encoder stream statistics.

RtcpStreamStat rxStat

Decoder stream statistics.

MathStat rttUsec

Round trip delay statistic.

pj_uint32_t rtpTxLastTs

Last TX RTP timestamp.

pj_uint16_t rtpTxLastSeq

Last TX RTP sequence.

MathStat rxIpdvUsec

Statistics of IP packet delay variation in receiving direction.

It is only used when PJMEDIA_RTCP_STAT_HAS_IPDV is set to non-zero.

MathStat rxRawJitterUsec

Statistic of raw jitter in receiving direction.

It is only used when PJMEDIA_RTCP_STAT_HAS_RAW_JITTER is set to non-
zero.

RtcpSdes peerSdes

Peer SDES.

7.9. Class Reference 111

PJSUA2 Documentation, Release 1.0-alpha

struct pj::RtcpStreamStat
#include <call.hpp>

Unidirectional RTP stream statistics.

Public Functions

void fromPj(const pjmedia_rtcp_stream_stat & prm)

Convert from pjsip.

Public Members

TimeVal update

Time of last update.

unsigned updateCount

Number of updates (to calculate avg)

unsigned pkt

Total number of packets.

unsigned bytes

Total number of payload/bytes.

unsigned discard

Total number of discarded packets.

unsigned loss

Total number of packets lost.

unsigned reorder

Total number of out of order packets.

unsigned dup

Total number of duplicates packets.

MathStat lossPeriodUsec

Loss period statistics.

unsigned burst

Burst/sequential packet lost detected.

unsigned random

Random packet lost detected.

struct pj::RtcpStreamStat::@0 lossType

Types of loss detected.

MathStat jitterUsec

Jitter statistics.

struct pj::MathStat
#include <call.hpp>

112 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

This structure describes statistics state.

Public Functions

MathStat()

Default constructor.

void fromPj(const pj_math_stat & prm)

Convert from pjsip.

Public Members

int n

number of samples

int max

maximum value

int min

minimum value

int last

last value

int mean

mean

struct pj::MediaTransportInfo
#include <call.hpp>

This structure describes media transport informations.

It corresponds to the pjmedia_transport_info structure.

Public Functions

void fromPj(const pjmedia_transport_info & info)

Convert from pjsip.

Public Members

SocketAddress srcRtpName

Remote address where RTP originated from.

SocketAddress srcRtcpName

Remote address where RTCP originated from.

7.9. Class Reference 113

PJSUA2 Documentation, Release 1.0-alpha

7.9.4 Callback Parameters

struct pj::OnCallStateParam
#include <call.hpp>

This structure contains parameters for Call::onCallState() callback.

Public Members

SipEvent e

Event which causes the call state to change.

struct pj::OnCallTsxStateParam
#include <call.hpp>

This structure contains parameters for Call::onCallTsxState() callback.

Public Members

SipEvent e

Transaction event that caused the state change.

struct pj::OnCallMediaStateParam
#include <call.hpp>

This structure contains parameters for Call::onCallMediaState() callback.

struct pj::OnCallSdpCreatedParam
#include <call.hpp>

This structure contains parameters for Call::onCallSdpCreated() callback.

Public Members

SdpSession sdp

The SDP has just been created.

SdpSession remSdp

The remote SDP, will be empty if local is SDP offerer.

struct pj::OnStreamCreatedParam
#include <call.hpp>

This structure contains parameters for Call::onStreamCreated() callback.

Public Members

MediaStream stream

Media stream.

114 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

unsigned streamIdx

Stream index in the media session.

MediaPort pPort

On input, it specifies the media port of the stream.

Application may modify this pointer to point to different media port to be registered
to the conference bridge.

struct pj::OnStreamDestroyedParam
#include <call.hpp>

This structure contains parameters for Call::onStreamDestroyed() callback.

Public Members

MediaStream stream

Media stream.

unsigned streamIdx

Stream index in the media session.

struct pj::OnDtmfDigitParam
#include <call.hpp>

This structure contains parameters for Call::onDtmfDigit() callback.

Public Members

string digit

DTMF ASCII digit.

struct pj::OnCallTransferRequestParam
#include <call.hpp>

This structure contains parameters for Call::onCallTransferRequest() callback.

Public Members

string dstUri

The destination where the call will be transferred to.

pjsip_status_code statusCode

Status code to be returned for the call transfer request.

On input, it contains status code 200.

CallSetting opt

The current call setting, application can update this setting for the call being trans-
ferred.

7.9. Class Reference 115

PJSUA2 Documentation, Release 1.0-alpha

struct pj::OnCallTransferStatusParam
#include <call.hpp>

This structure contains parameters for Call::onCallTransferStatus() callback.

Public Members

pjsip_status_code statusCode

Status progress of the transfer request.

string reason

Status progress reason.

bool finalNotify

If true, no further notification will be reported.

The statusCode specified in this callback is the final status.

bool cont

Initially will be set to true, application can set this to false if it no longer wants to
receive further notification (for example, after it hangs up the call).

struct pj::OnCallReplaceRequestParam
#include <call.hpp>

This structure contains parameters for Call::onCallReplaceRequest() callback.

Public Members

SipRxData rdata

The incoming INVITE request to replace the call.

pjsip_status_code statusCode

Status code to be set by application.

Application should only return a final status (200-699)

string reason

Optional status text to be set by application.

CallSetting opt

The current call setting, application can update this setting for the call being replaced.

struct pj::OnCallReplacedParam
#include <call.hpp>

This structure contains parameters for Call::onCallReplaced() callback.

Public Members

pjsua_call_id newCallId

The new call id.

116 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

struct pj::OnCallRxOfferParam
#include <call.hpp>

This structure contains parameters for Call::onCallRxOffer() callback.

Public Members

SdpSession offer

The new offer received.

pjsip_status_code statusCode

Status code to be returned for answering the offer.

On input, it contains status code 200. Currently, valid values are only 200 and 488.

CallSetting opt

The current call setting, application can update this setting for answering the offer.

struct pj::OnCallRedirectedParam
#include <call.hpp>

This structure contains parameters for Call::onCallRedirected() callback.

Public Members

string targetUri

The current target to be tried.

SipEvent e

The event that caused this callback to be called.

This could be the receipt of 3xx response, or 4xx/5xx response received for the IN-
VITE sent to subsequent targets, or empty (e.type == PJSIP_EVENT_UNKNOWN)
if this callback is called from within Call::processRedirect() context.

struct pj::OnCallMediaEventParam
#include <call.hpp>

This structure contains parameters for Call::onCallMediaEvent() callback.

Public Members

unsigned medIdx

The media stream index.

MediaEvent ev

The media event.

struct pj::OnCallMediaTransportStateParam
#include <call.hpp>

7.9. Class Reference 117

PJSUA2 Documentation, Release 1.0-alpha

This structure contains parameters for Call::onCallMediaTransportState() callback.

Public Members

unsigned medIdx

The media index.

pjsua_med_tp_st state

The media transport state.

pj_status_t status

The last error code related to the media transport state.

int sipErrorCode

Optional SIP error code.

struct pj::OnCreateMediaTransportParam
#include <call.hpp>

This structure contains parameters for Call::onCreateMediaTransport() callback.

Public Members

unsigned mediaIdx

The media index in the SDP for which this media transport will be used.

MediaTransport mediaTp

The media transport which otherwise will be used by the call has this callback not
been implemented.

Application can change this to its own instance of media transport to be used by the
call.

unsigned flags

Bitmask from pjsua_create_media_transport_flag.

struct pj::CallOpParam
#include <call.hpp>

This structure contains parameters for Call::answer(), Call::hangup(), Call::reinvite(), Call::update(),
Call::xfer(), Call::xferReplaces(), Call::setHold().

Public Functions

CallOpParam(bool useDefaultCallSetting = false)

Default constructor initializes with zero/empty values.

Setting useDefaultCallSetting to true will initialize opt with default call setting val-
ues.

Public Members

CallSetting opt

The call setting.

118 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

pjsip_status_code statusCode

Status code.

string reason

Reason phrase.

unsigned options

Options.

SipTxOption txOption

List of headers etc to be added to outgoing response message.

Note that this message data will be persistent in all next answers/responses for this
INVITE request.

struct pj::CallSendRequestParam
#include <call.hpp>

This structure contains parameters for Call::sendRequest()

Public Functions

CallSendRequestParam()

Default constructor initializes with zero/empty values.

Public Members

string method

SIP method of the request.

SipTxOption txOption

Message body and/or list of headers etc to be included in outgoing request.

struct pj::CallVidSetStreamParam
#include <call.hpp>

This structure contains parameters for Call::vidSetStream()

Public Functions

CallVidSetStreamParam()

Default constructor.

Public Members

int medIdx

Specify the media stream index.

This can be set to -1 to denote the default video stream in the call, which is the first
active video stream or any first video stream if none is active.

This field is valid for all video stream operations, except PJ-
SUA_CALL_VID_STRM_ADD.

7.9. Class Reference 119

PJSUA2 Documentation, Release 1.0-alpha

Default: -1 (first active video stream, or any first video stream if none is active)

pjmedia_dir dir

Specify the media stream direction.

This field is valid for the following video stream operations: PJ-
SUA_CALL_VID_STRM_ADD and PJSUA_CALL_VID_STRM_CHANGE_DIR.

Default: PJMEDIA_DIR_ENCODING_DECODING

pjmedia_vid_dev_index capDev

Specify the video capture device ID.

This can be set to PJMEDIA_VID_DEFAULT_CAPTURE_DEV to specify the de-
fault capture device as configured in the account.

This field is valid for the following video stream op-
erations: PJSUA_CALL_VID_STRM_ADD and PJ-
SUA_CALL_VID_STRM_CHANGE_CAP_DEV.

Default: PJMEDIA_VID_DEFAULT_CAPTURE_DEV.

7.9.5 Other

struct pj::MediaEvent
#include <call.hpp>

This structure describes a media event.

It corresponds to the pjmedia_event structure.

Public Functions

void fromPj(const pjmedia_event & ev)

Convert from pjsip.

Public Members

pjmedia_event_type type

The event type.

MediaFmtChangedEvent fmtChanged

Media format changed event data.

GenericData ptr

Pointer to storage to user event data, if it’s outside this struct.

union pj::MediaEvent::@1 data

Additional data/parameters about the event.

The type of data will be specific to the event type being reported.

void * pjMediaEvent

Pointer to original pjmedia_event.

Only valid when the struct is converted from PJSIP’s pjmedia_event.

120 Chapter 7. Calls

PJSUA2 Documentation, Release 1.0-alpha

struct pj::MediaFmtChangedEvent
#include <call.hpp>

This structure describes a media format changed event.

Public Members

unsigned newWidth

The new width.

unsigned newHeight

The new height.

struct pj::SdpSession
#include <call.hpp>

This structure describes SDP session description.

It corresponds to the pjmedia_sdp_session structure.

Public Functions

void fromPj(const pjmedia_sdp_session & sdp)

Convert from pjsip.

Public Members

string wholeSdp

The whole SDP as a string.

void * pjSdpSession

Pointer to its original pjmedia_sdp_session.

Only valid when the struct is converted from PJSIP’s pjmedia_sdp_session.

struct pj::RtcpSdes
#include <call.hpp>

RTCP SDES structure.

Public Functions

void fromPj(const pjmedia_rtcp_sdes & prm)

Convert from pjsip.

Public Members

string cname

RTCP SDES type CNAME.

string name

RTCP SDES type NAME.

string email

7.9. Class Reference 121

PJSUA2 Documentation, Release 1.0-alpha

RTCP SDES type EMAIL.

string phone

RTCP SDES type PHONE.

string loc

RTCP SDES type LOC.

string tool

RTCP SDES type TOOL.

string note

RTCP SDES type NOTE.

122 Chapter 7. Calls

CHAPTER

EIGHT

BUDDY (PRESENCE)

Presence feature in PJSUA2 centers around Buddy class. This class represents a remote buddy (a person, or a SIP
endpoint).

8.1 Subclassing the Buddy class

To use the Buddy class, normally application SHOULD create its own subclass, such as:

class MyBuddy : public Buddy
{
public:

MyBuddy() {}
~MyBuddy() {}

virtual void onBuddyState();
};

In its subclass, application can implement the buddy callback to get the notifications on buddy state change.

8.2 Subscribing to Buddy’s Presence Status

To subscribe to buddy’s presence status, you need to add a buddy object and subscribe to buddy’s presence status. The
snippet below shows a sample code to achieve these:

BuddyConfig cfg;
cfg.uri = "sip:alice@example.com";
MyBuddy buddy;
try {

buddy.create(*acc, cfg);
buddy.subscribePresence(true);

} catch(Error& err) {
}

Then you can get the buddy’s presence state change inside the onBuddyState() callback:

void MyBuddy::onBuddyState()
{

BuddyInfo bi = getInfo();
cout << "Buddy " << bi.uri << " is " << bi.presStatus.statusText << endl;

}

For more information, please see Buddy class reference documentation.

123

PJSUA2 Documentation, Release 1.0-alpha

8.3 Responding to Presence Subscription Request

By default, incoming presence subscription to an account will be accepted automatically. You will probably want to
change this behavior, for example only to automatically accept subscription if it comes from one of the buddy in the
buddy list, and for anything else prompt the user if he/she wants to accept the request.

This can be done by overriding the onIncomingSubscribe() method of the Account class. Please see the documentation
of this method for more info.

8.4 Changing Account’s Presence Status

To change account’s presence status, you can use the function Account.setOnlineStatus() to set basic account’s pres-
ence status (i.e. available or not available) and optionally, some extended information (e.g. busy, away, on the phone,
etc), such as:

try {
PresenceStatus ps;
ps.status = PJSUA_BUDDY_STATUS_ONLINE;
// Optional, set the activity and some note
ps.activity = PJRPID_ACTIVITY_BUSY;
ps.note = "On the phone";
acc->setOnlineStatus(ps);

} catch(Error& err) {
}

When the presence status is changed, the account will publish the new status to all of its presence subscriber, either
with PUBLISH request or NOTIFY request, or both, depending on account configuration.

8.5 Instant Messaging(IM)

You can send IM using Buddy.sendInstantMessage(). The transmission status of outgoing instant messages is reported
in Account.onInstantMessageStatus() callback method of Account class.

In addition to sending instant messages, you can also send typing indication to remote buddy using
Buddy.sendTypingIndication().

Incoming IM and typing indication received not within the scope of a call will be reported in the callback functions
Account.onInstantMessage() and Account.onTypingIndication().

Alternatively, you can send IM and typing indication within a call by using Call.sendInstantMessage() and
Call.sendTypingIndication(). For more information, please see Call documentation.

8.6 Class Reference

8.6.1 Buddy

class pj::Buddy

Buddy.

Public Functions

124 Chapter 8. Buddy (Presence)

PJSUA2 Documentation, Release 1.0-alpha

Buddy()

Constructor.

~Buddy()

Destructor.

Note that if the Buddy instance is deleted, it will also delete the corresponding buddy
in the PJSUA-LIB.

void create(Account & acc, const BuddyConfig & cfg)

Create buddy and register the buddy to PJSUA-LIB.

Parameters

• acc - The account for this buddy.

• cfg - The buddy config.

bool isValid()

Check if this buddy is valid.

Return

True if it is.

BuddyInfo getInfo()

Get detailed buddy info.

Return

Buddy info.

void subscribePresence(bool subscribe)

Enable/disable buddy’s presence monitoring.

Once buddy’s presence is subscribed, application will be informed about buddy’s
presence status changed via onBuddyState() callback.

Parameters

• subscribe - Specify true to activate presence subscription.

void updatePresence(void)

8.6. Class Reference 125

PJSUA2 Documentation, Release 1.0-alpha

Update the presence information for the buddy.

Although the library periodically refreshes the presence subscription for all buddies,
some application may want to refresh the buddy’s presence subscription immediately,
and in this case it can use this function to accomplish this.

Note that the buddy’s presence subscription will only be initiated if presence monitor-
ing is enabled for the buddy. See subscribePresence() for more info. Also if presence
subscription for the buddy is already active, this function will not do anything.

Once the presence subscription is activated successfully for the buddy, application
will be notified about the buddy’s presence status in the onBuddyState() callback.

void sendInstantMessage(const SendInstantMessageParam & prm)

Send instant messaging outside dialog, using this buddy’s specified account for route
set and authentication.

Parameters

• prm - Sending instant message parameter.

void sendTypingIndication(const SendTypingIndicationParam & prm)

Send typing indication outside dialog.

Parameters

• prm - Sending instant message parameter.

void onBuddyState()

Notify application when the buddy state has changed.

Application may then query the buddy info to get the details.

8.6.2 Status

struct pj::PresenceStatus
#include <presence.hpp>

This describes presence status.

Public Functions

PresenceStatus()

Constructor.

Public Members

pjsua_buddy_status status

Buddy‘s online status.

126 Chapter 8. Buddy (Presence)

PJSUA2 Documentation, Release 1.0-alpha

string statusText

Text to describe buddy’s online status.

pjrpid_activity activity

Activity type.

string note

Optional text describing the person/element.

string rpidId

Optional RPID ID string.

8.6.3 Info

struct pj::BuddyInfo
#include <presence.hpp>

This structure describes buddy info, which can be retrieved by via Buddy::getInfo().

Public Functions

void fromPj(const pjsua_buddy_info & pbi)

Import from pjsip structure.

Public Members

string uri

The full URI of the buddy, as specified in the configuration.

string contact

Buddy‘s Contact, only available when presence subscription has been established to
the buddy.

bool presMonitorEnabled

Flag to indicate that we should monitor the presence information for this buddy (nor-
mally yes, unless explicitly disabled).

pjsip_evsub_state subState

If presMonitorEnabled is true, this specifies the last state of the presence subscription.

If presence subscription session is currently active, the value will be
PJSIP_EVSUB_STATE_ACTIVE. If presence subscription request has been re-
jected, the value will be PJSIP_EVSUB_STATE_TERMINATED, and the termina-
tion reason will be specified in subTermReason.

string subStateName

String representation of subscription state.

pjsip_status_code subTermCode

Specifies the last presence subscription termination code.

This would return the last status of the SUBSCRIBE request. If the subscription is
terminated with NOTIFY by the server, this value will be set to 200, and subscription
termination reason will be given in the subTermReason field.

8.6. Class Reference 127

PJSUA2 Documentation, Release 1.0-alpha

string subTermReason

Specifies the last presence subscription termination reason.

If presence subscription is currently active, the value will be empty.

PresenceStatus presStatus

Presence status.

8.6.4 Config

struct pj::BuddyConfig
#include <presence.hpp>

This structure describes buddy configuration when adding a buddy to the buddy list with Buddy::create().

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

string uri

Buddy URL or name address.

bool subscribe

Specify whether presence subscription should start immediately.

128 Chapter 8. Buddy (Presence)

CHAPTER

NINE

PJSUA2 SAMPLE APPLICATIONS

9.1 Sample Apps

9.1.1 C++

There is a very simple C++ sample application available in pjsip-apps/src/samples/pjsua2_demo.cpp.
The binary will be located in pjsip-apps/bin/samples.

9.1.2 Python GUI

This is a rather complete Python GUI sample apps, located in pjsip-apps/src/pygui. It requires Python 2.7
and above, and the Python SWIG module of course. To use the application, simply run:

python application.py

9.1.3 Android

Please see https://trac.pjsip.org/repos/wiki/Getting-Started/Android#pjsua2 for Android sample application.

9.1.4 Java

There is a Hello World type of application located in pjsip-apps/src/swig/java. This requires the Java
SWIG module. After building the SWIG module, run make test from this directory to run the app.

9.2 Miscellaneous

9.2.1 How to

129

https://trac.pjsip.org/repos/wiki/Getting-Started/Android#pjsua2

PJSUA2 Documentation, Release 1.0-alpha

130 Chapter 9. PJSUA2 Sample Applications

CHAPTER

TEN

MEDIA QUALITY

10.1 Audio Quality

If you experience any problem with the audio quality, you may want to try the steps below:

1. Follow the guide: Test the sound device using pjsystest.

2. Identify the sound problem and troubleshoot it using the steps described in: Checking for sound problems.

It is probably easier to do the testing using lower level API such as PJSUA since we already have a built-in pjsua
sample app located in pjsip-apps/bin to do the testing. However, you can also do the testing in your application using
PJSUA2 API such as local audio loopback, recording to WAV file as explained in the Media chapter previously.

10.2 Video Quality

For video quality problems, the steps are as follows:

1. For lack of video, check account’s AccountVideoConfig, especially the fields autoShowIncoming and auto-
TransmitOutgoing. More about the video API is explained in Video Users Guide.

2. Check local video preview using PJSUA API as described in Video Users Guide-Video Preview API.

3. Since video requires a larger bandwidth, we need to check for network impairments as described in Checking
Network Impairments. The document is for troubleshooting audio problem but it applies for video as well.

4. Check the CPU utilization. If the CPU utilization is too high, you can try a different (less CPU-intensive)
video codec or reduce the resolution/fps. A general guide on how to reduce CPU utilization can be found here:
FAQ-CPU utilization.

131

http://trac.pjsip.org/repos/wiki/Testing_Audio_Device_with_pjsystest
http://trac.pjsip.org/repos/wiki/sound-problems
http://trac.pjsip.org/repos/wiki/Video_Users_Guide
http://trac.pjsip.org/repos/wiki/Video_Users_Guide#VideopreviewAPI
http://trac.pjsip.org/repos/wiki/audio-check-packet-loss
http://trac.pjsip.org/repos/wiki/audio-check-packet-loss
http://trac.pjsip.org/repos/wiki/FAQ#cpu

PJSUA2 Documentation, Release 1.0-alpha

132 Chapter 10. Media Quality

CHAPTER

ELEVEN

NETWORK PROBLEMS

11.1 IP Address Change

Please see the wiki Handling IP Address Change. Note that the guide is written using PJSUA API as a reference.

11.2 Blocked/Filtered Network

Please refer to the wiki Getting Around Blocked or Filtered VoIP Network.

133

https://trac.pjsip.org/repos/wiki/IPAddressChange
https://trac.pjsip.org/repos/wiki/get-around-nat-blocked-traffic-filtering

PJSUA2 Documentation, Release 1.0-alpha

134 Chapter 11. Network Problems

CHAPTER

TWELVE

PJSUA2 API REFERENCE MANUALS

12.1 endpoint.hpp

PJSUA2 Base Agent Operation.

namespace pj

PJSUA2 API is inside pj namespace.

class OnNatDetectionCompleteParam

Argument to Endpoint::onNatDetectionComplete() callback.

Public Members

pj_status_t status

Status of the detection process.

If this value is not PJ_SUCCESS, the detection has failed and nat_type field
will contain PJ_STUN_NAT_TYPE_UNKNOWN.

string reason

The text describing the status, if the status is not PJ_SUCCESS.

pj_stun_nat_type natType

This contains the NAT type as detected by the detection procedure.

This value is only valid when the status is PJ_SUCCESS.

string natTypeName

Text describing that NAT type.

class OnNatCheckStunServersCompleteParam

Argument to Endpoint::onNatCheckStunServersComplete() callback.

Public Members

Token userData

Arbitrary user data that was passed to Endpoint::natCheckStunServers()
function.

pj_status_t status

This will contain PJ_SUCCESS if at least one usable STUN server is found,
otherwise it will contain the last error code during the operation.

string name

135

PJSUA2 Documentation, Release 1.0-alpha

The server name that yields successful result.

This will only contain value if status is successful.

SocketAddress addr

The server IP address and port in “IP:port” format.

This will only contain value if status is successful.

class OnTimerParam

Parameter of Endpoint::onTimer() callback.

Public Members

Token userData

Arbitrary user data that was passed to Endpoint::utilTimerSchedule() func-
tion.

unsigned msecDelay

The interval of this timer, in miliseconds.

class OnTransportStateParam

Parameter of Endpoint::onTransportState() callback.

Public Members

TransportHandle hnd

The transport handle.

pjsip_transport_state state

Transport current state.

pj_status_t lastError

The last error code related to the transport state.

class OnSelectAccountParam

Parameter of Endpoint::onSelectAccount() callback.

Public Members

SipRxData rdata

The incoming request.

int accountIndex

The account index to be used to handle the request.

Upon entry, this will be filled by the account index chosen by the library.
Application may change it to another value to use another account.

class UaConfig

SIP User Agent related settings.

Public Functions

UaConfig()

Default constructor to initialize with default values.

136 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

void fromPj(const pjsua_config & ua_cfg)

Construct from pjsua_config.

pjsua_config toPj()

Export to pjsua_config.

void readObject(const ContainerNode & node)

Read this object from a container.

Parameters

• node - Container to write values from.

void writeObject(ContainerNode & node)

Write this object to a container.

Parameters

• node - Container to write values to.

Public Members

unsigned maxCalls

Maximum calls to support (default: 4).

The value specified here must be smaller than the compile time maximum
settings PJSUA_MAX_CALLS, which by default is 32. To increase this
limit, the library must be recompiled with new PJSUA_MAX_CALLS value.

unsigned threadCnt

Number of worker threads.

Normally application will want to have at least one worker thread, unless
when it wants to poll the library periodically, which in this case the worker
thread can be set to zero.

bool mainThreadOnly

When this flag is non-zero, all callbacks that come from thread other than
main thread will be posted to the main thread and to be executed by End-
point::libHandleEvents() function.

This includes the logging callback. Note that this will only work if thread-
Cnt is set to zero and Endpoint::libHandleEvents() is performed by main
thread. By default, the main thread is set from the thread that invoke End-
point::libCreate()

Default: false

StringVector nameserver

12.1. endpoint.hpp 137

PJSUA2 Documentation, Release 1.0-alpha

Array of nameservers to be used by the SIP resolver subsystem.

The order of the name server specifies the priority (first name server will be
used first, unless it is not reachable).

string userAgent

Optional user agent string (default empty).

If it’s empty, no User-Agent header will be sent with outgoing requests.

StringVector stunServer

Array of STUN servers to try.

The library will try to resolve and contact each of the STUN server entry
until it finds one that is usable. Each entry may be a domain name, host
name, IP address, and it may contain an optional port number. For example:

When nameserver is configured in the pjsua_config.nameserver field, if entry
is not an IP address, it will be resolved with DNS SRV resolution first, and
it will fallback to use DNS A resolution if this fails. Port number may be
specified even if the entry is a domain name, in case the DNS SRV resolution
should fallback to a non-standard port.

When nameserver is not configured, entries will be resolved with
pj_gethostbyname() if it’s not an IP address. Port number may be specified
if the server is not listening in standard STUN port.

bool stunIgnoreFailure

This specifies if the library startup should ignore failure with the STUN
servers.

If this is set to PJ_FALSE, the library will refuse to start if it fails to resolve
or contact any of the STUN servers.

Default: TRUE

int natTypeInSdp

Support for adding and parsing NAT type in the SDP to assist troubleshoot-
ing.

The valid values are:

Default: 1

bool mwiUnsolicitedEnabled

Handle unsolicited NOTIFY requests containing message waiting indication
(MWI) info.

Unsolicited MWI is incoming NOTIFY requests which are not requested by
client with SUBSCRIBE request.

If this is enabled, the library will respond 200/OK to the NOTIFY request
and forward the request to Endpoint::onMwiInfo() callback.

See also AccountMwiConfig.enabled.

Default: PJ_TRUE

class LogEntry

138 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Data containing log entry to be written by the LogWriter.

Public Members

int level

Log verbosity level of this message.

string msg

The log message.

long threadId

ID of current thread.

string threadName

The name of the thread that writes this log.

class LogWriter

Interface for writing log messages.

Applications can inherit this class and supply it in the LogConfig structure to implement custom
log writing facility.

Public Functions

~LogWriter()

Destructor.

void write(const LogEntry & entry)

Write a log entry.

class LogConfig

Logging configuration, which can be (optionally) specified when calling Lib::init().

Public Functions

LogConfig()

Default constructor initialises with default values.

void fromPj(const pjsua_logging_config & lc)

Construct from pjsua_logging_config.

pjsua_logging_config toPj()

Generate pjsua_logging_config.

void readObject(const ContainerNode & node)

Read this object from a container.

12.1. endpoint.hpp 139

PJSUA2 Documentation, Release 1.0-alpha

Parameters

• node - Container to write values from.

void writeObject(ContainerNode & node)

Write this object to a container.

Parameters

• node - Container to write values to.

Public Members

unsigned msgLogging

Log incoming and outgoing SIP message? Yes!

unsigned level

Input verbosity level.

Value 5 is reasonable.

unsigned consoleLevel

Verbosity level for console.

Value 4 is reasonable.

unsigned decor

Log decoration.

string filename

Optional log filename if app wishes the library to write to log file.

unsigned fileFlags

Additional flags to be given to pj_file_open() when opening the log file.

By default, the flag is PJ_O_WRONLY. Application may set
PJ_O_APPEND here so that logs are appended to existing file instead
of overwriting it.

Default is 0.

LogWriter * writer

Custom log writer, if required.

This instance will be destroyed by the endpoint when the endpoint is de-
stroyed.

class MediaConfig

This structure describes media configuration, which will be specified when calling Lib::init().

Public Functions

MediaConfig()

Default constructor initialises with default values.

140 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

void fromPj(const pjsua_media_config & mc)

Construct from pjsua_media_config.

pjsua_media_config toPj()

Export.

void readObject(const ContainerNode & node)

Read this object from a container.

Parameters

• node - Container to write values from.

void writeObject(ContainerNode & node)

Write this object to a container.

Parameters

• node - Container to write values to.

Public Members

unsigned clockRate

Clock rate to be applied to the conference bridge.

If value is zero, default clock rate will be used (PJ-
SUA_DEFAULT_CLOCK_RATE, which by default is 16KHz).

unsigned sndClockRate

Clock rate to be applied when opening the sound device.

If value is zero, conference bridge clock rate will be used.

unsigned channelCount

Channel count be applied when opening the sound device and conference
bridge.

unsigned audioFramePtime

Specify audio frame ptime.

The value here will affect the samples per frame of both the sound device
and the conference bridge. Specifying lower ptime will normally reduce the
latency.

Default value: PJSUA_DEFAULT_AUDIO_FRAME_PTIME

unsigned maxMediaPorts

12.1. endpoint.hpp 141

PJSUA2 Documentation, Release 1.0-alpha

Specify maximum number of media ports to be created in the conference
bridge.

Since all media terminate in the bridge (calls, file player, file recorder, etc),
the value must be large enough to support all of them. However, the larger
the value, the more computations are performed.

Default value: PJSUA_MAX_CONF_PORTS

bool hasIoqueue

Specify whether the media manager should manage its own ioqueue for the
RTP/RTCP sockets.

If yes, ioqueue will be created and at least one worker thread will be created
too. If no, the RTP/RTCP sockets will share the same ioqueue as SIP sockets,
and no worker thread is needed.

Normally application would say yes here, unless it wants to run everything
from a single thread.

unsigned threadCnt

Specify the number of worker threads to handle incoming RTP packets.

A value of one is recommended for most applications.

unsigned quality

Media quality, 0-10, according to this table: 5-10: resampling use large filter,
3-4: resampling use small filter, 1-2: resampling use linear.

The media quality also sets speex codec quality/complexity to the number.

Default: 5 (PJSUA_DEFAULT_CODEC_QUALITY).

unsigned ptime

Specify default codec ptime.

Default: 0 (codec specific)

bool noVad

Disable VAD?

Default: 0 (no (meaning VAD is enabled))

unsigned ilbcMode

iLBC mode (20 or 30).

Default: 30 (PJSUA_DEFAULT_ILBC_MODE)

unsigned txDropPct

Percentage of RTP packet to drop in TX direction (to simulate packet lost).

Default: 0

unsigned rxDropPct

Percentage of RTP packet to drop in RX direction (to simulate packet lost).

Default: 0

unsigned ecOptions

142 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Echo canceller options (see pjmedia_echo_create())

Default: 0.

unsigned ecTailLen

Echo canceller tail length, in miliseconds.

Setting this to zero will disable echo cancellation.

Default: PJSUA_DEFAULT_EC_TAIL_LEN

unsigned sndRecLatency

Audio capture buffer length, in milliseconds.

Default: PJMEDIA_SND_DEFAULT_REC_LATENCY

unsigned sndPlayLatency

Audio playback buffer length, in milliseconds.

Default: PJMEDIA_SND_DEFAULT_PLAY_LATENCY

int jbInit

Jitter buffer initial prefetch delay in msec.

The value must be between jb_min_pre and jb_max_pre below.

Default: -1 (to use default stream settings, currently 150 msec)

int jbMinPre

Jitter buffer minimum prefetch delay in msec.

Default: -1 (to use default stream settings, currently 60 msec)

int jbMaxPre

Jitter buffer maximum prefetch delay in msec.

Default: -1 (to use default stream settings, currently 240 msec)

int jbMax

Set maximum delay that can be accomodated by the jitter buffer msec.

Default: -1 (to use default stream settings, currently 360 msec)

int sndAutoCloseTime

Specify idle time of sound device before it is automatically closed, in sec-
onds.

Use value -1 to disable the auto-close feature of sound device

Default : 1

bool vidPreviewEnableNative

Specify whether built-in/native preview should be used if available.

In some systems, video input devices have built-in capability to show pre-
view window of the device. Using this built-in preview is preferable as it
consumes less CPU power. If built-in preview is not available, the library
will perform software rendering of the input. If this field is set to PJ_FALSE,
software preview will always be used.

Default: PJ_TRUE

12.1. endpoint.hpp 143

PJSUA2 Documentation, Release 1.0-alpha

class EpConfig

Endpoint configuration.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container.

Parameters

• node - Container to write values from.

void writeObject(ContainerNode & node)

Write this object to a container.

Parameters

• node - Container to write values to.

Public Members

UaConfig uaConfig

UA config.

LogConfig logConfig

Logging config.

MediaConfig medConfig

Media config.

class PendingJob

Public Functions

void execute(bool is_pending)

Perform the job.

~PendingJob()

Virtual destructor.

class Endpoint

Endpoint represents an instance of pjsua library.

There can only be one instance of pjsua library in an application, hence this class is a singleton.

Public Functions

Endpoint()

Default constructor.

~Endpoint()

144 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Virtual destructor.

Version libVersion()

Get library version.

void libCreate()

Instantiate pjsua application.

Application must call this function before calling any other functions, to
make sure that the underlying libraries are properly initialized. Once this
function has returned success, application must call destroy() before quitting.

pjsua_state libGetState()

Get library state.

Return

library state.

void libInit(const EpConfig & prmEpConfig)

Initialize pjsua with the specified settings.

All the settings are optional, and the default values will be used when the
config is not specified.

Note that create() MUST be called before calling this function.

Parameters

• prmEpConfig - Endpoint configurations

void libStart()

Call this function after all initialization is done, so that the library can do
additional checking set up.

Application may call this function any time after init().

void libRegisterWorkerThread(const string & name)

Register a thread to poll for events.

This function should be called by an external worker thread, and it will block
polling for events until the library is destroyed.

12.1. endpoint.hpp 145

PJSUA2 Documentation, Release 1.0-alpha

void libStopWorkerThreads()

Stop all worker threads.

int libHandleEvents(unsigned msec_timeout)

Poll pjsua for events, and if necessary block the caller thread for the specified
maximum interval (in miliseconds).

Application doesn’t normally need to call this function if it has configured
worker thread (thread_cnt field) in pjsua_config structure, because polling
then will be done by these worker threads instead.

If EpConfig::UaConfig::mainThreadOnly is enabled and this function is
called from the main thread (by default the main thread is thread that calls
libCreate()), this function will also scan and run any pending jobs in the list.

Return

The number of events that have been handled during the poll. Negative
value indicates error, and application can retrieve the error as (status =
-return_value).

Parameters

• msec_timeout - Maximum time to wait, in miliseconds.

void libDestroy(unsigned prmFlags = 0)

Destroy pjsua.

Application is recommended to perform graceful shutdown before calling
this function (such as unregister the account from the SIP server, terminate
presense subscription, and hangup active calls), however, this function will
do all of these if it finds there are active sessions that need to be terminated.
This function will block for few seconds to wait for replies from remote.

Application.may safely call this function more than once if it doesn’t keep
track of it’s state.

Parameters

• prmFlags - Combination of pjsua_destroy_flag enumeration.

string utilStrError(pj_status_t prmErr)

Retrieve the error string for the specified status code.

Parameters

• prmErr - The error code.

void utilLogWrite(int prmLevel, const string & prmSender, const string & prmMsg)

146 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Write a log message.

Parameters

• prmLevel - Log verbosity level (1-5)

• prmSender - The log sender.

• prmMsg - The log message.

void utilLogWrite(LogEntry & e)

Write a log entry.

Parameters

• e - The log entry.

pj_status_t utilVerifySipUri(const string & prmUri)

This is a utility function to verify that valid SIP url is given.

If the URL is a valid SIP/SIPS scheme, PJ_SUCCESS will be returned.

Return

PJ_SUCCESS on success, or the appropriate error code.

See

utilVerifyUri()

Parameters

• prmUri - The URL string.

pj_status_t utilVerifyUri(const string & prmUri)

This is a utility function to verify that valid URI is given.

Unlike utilVerifySipUri(), this function will return PJ_SUCCESS if tel: URI
is given.

Return

PJ_SUCCESS on success, or the appropriate error code.

See

pjsua_verify_sip_url()

Parameters

• prmUri - The URL string.

Token utilTimerSchedule(unsigned prmMsecDelay, Token prmUserData)

12.1. endpoint.hpp 147

PJSUA2 Documentation, Release 1.0-alpha

Schedule a timer with the specified interval and user data.

When the interval elapsed, onTimer() callback will be called. Note that the
callback may be executed by different thread, depending on whether worker
thread is enabled or not.

Return

Token to identify the timer, which could be given to utilTimerCancel().

Parameters

• prmMsecDelay - The time interval in msec.

• prmUserData - Arbitrary user data, to be given back to application
in the callback.

void utilTimerCancel(Token prmToken)

Cancel previously scheduled timer with the specified timer token.

Parameters

• prmToken - The timer token, which was returned from previous util-
TimerSchedule() call.

void utilAddPendingJob(PendingJob * job)

Utility to register a pending job to be executed by main thread.

If EpConfig::UaConfig::mainThreadOnly is false, the job will be executed
immediately.

Parameters

• job - The job class.

IntVector utilSslGetAvailableCiphers()

Get cipher list supported by SSL/TLS backend.

void natDetectType(void)

This is a utility function to detect NAT type in front of this endpoint.

Once invoked successfully, this function will complete asynchronously and
report the result in onNatDetectionComplete().

After NAT has been detected and the callback is called, application can get
the detected NAT type by calling natGetType(). Application can also perform
NAT detection by calling natDetectType() again at later time.

Note that STUN must be enabled to run this function successfully.

148 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

pj_stun_nat_type natGetType()

Get the NAT type as detected by natDetectType() function.

This function will only return useful NAT type after natDetectType() has
completed successfully and onNatDetectionComplete() callback has been
called.

Exception: if this function is called while detection is in progress,
PJ_EPENDING exception will be raised.

void natCheckStunServers(const StringVector & prmServers, bool prmWait, Token
prmUserData)

Auxiliary function to resolve and contact each of the STUN server entries
(sequentially) to find which is usable.

The libInit() must have been called before calling this function.

See

natCancelCheckStunServers()

Parameters

• prmServers - Array of STUN servers to try. The endpoint will try to
resolve and contact each of the STUN server entry until it finds one that
is usable. Each entry may be a domain name, host name, IP address,
and it may contain an optional port number. For example:

• prmWait - Specify if the function should block until it gets the result.
In this case, the function will block while the resolution is being done,
and the callback will be called before this function returns.

• prmUserData - Arbitrary user data to be passed back to application
in the callback.

void natCancelCheckStunServers(Token token, bool notify_cb = false)

Cancel pending STUN resolution which match the specified token.

Exception: PJ_ENOTFOUND if there is no matching one, or other error.

Parameters

• token - The token to match. This token was given to natCheckStun-
Servers()

• notify_cb - Boolean to control whether the callback should be called
for cancelled resolutions. When the callback is called, the status in the
result will be set as PJ_ECANCELLED.

TransportId transportCreate(pjsip_transport_type_e type, const TransportConfig
& cfg)

12.1. endpoint.hpp 149

PJSUA2 Documentation, Release 1.0-alpha

Create and start a new SIP transport according to the specified settings.

Return

The transport ID.

Parameters

• type - Transport type.

• cfg - Transport configuration.

IntVector transportEnum()

Enumerate all transports currently created in the system.

This function will return all transport IDs, and application may then call
transportGetInfo() function to retrieve detailed information about the trans-
port.

Return

Array of transport IDs.

TransportInfo transportGetInfo(TransportId id)

Get information about transport.

Return

Transport info.

Parameters

• id - Transport ID.

void transportSetEnable(TransportId id, bool enabled)

Disable a transport or re-enable it.

By default transport is always enabled after it is created. Disabling a trans-
port does not necessarily close the socket, it will only discard incoming mes-
sages and prevent the transport from being used to send outgoing messages.

Parameters

• id - Transport ID.

• enabled - Enable or disable the transport.

void transportClose(TransportId id)

Close the transport.

150 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

The system will wait until all transactions are closed while preventing new
users from using the transport, and will close the transport when its usage
count reaches zero.

Parameters

• id - Transport ID.

void hangupAllCalls(void)

Terminate all calls.

This will initiate call hangup for all currently active calls.

void mediaAdd(AudioMedia & media)

Add media to the media list.

Parameters

• media - media to be added.

void mediaRemove(AudioMedia & media)

Remove media from the media list.

Parameters

• media - media to be removed.

bool mediaExists(const AudioMedia & media)

Check if media has been added to the media list.

Return

True if media has been added, false otherwise.

Parameters

• media - media to be check.

unsigned mediaMaxPorts()

Get maximum number of media port.

Return

Maximum number of media port in the conference bridge.

unsigned mediaActivePorts()

12.1. endpoint.hpp 151

PJSUA2 Documentation, Release 1.0-alpha

Get current number of active media port in the bridge.

Return

The number of active media port.

const AudioMediaVector & mediaEnumPorts()

Enumerate all media port.

Return

The list of media port.

AudDevManager & audDevManager()

Get the instance of Audio Device Manager.

Return

The Audio Device Manager.

const CodecInfoVector & codecEnum()

Enum all supported codecs in the system.

Return

Array of codec info.

void codecSetPriority(const string & codec_id, pj_uint8_t priority)

Change codec priority.

Parameters

• codec_id - Codec ID, which is a string that uniquely identify the
codec (such as “speex/8000”).

• priority - Codec priority, 0-255, where zero means to disable the
codec.

CodecParam codecGetParam(const string & codec_id)

Get codec parameters.

Return

Codec parameters. If codec is not found, Error will be thrown.

Parameters

• codec_id - Codec ID.

152 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

void codecSetParam(const string & codec_id, const CodecParam param)

Set codec parameters.

Parameters

• codec_id - Codec ID.

• param - Codec parameter to set. Set to NULL to reset codec parameter
to library default settings.

void onNatDetectionComplete(const OnNatDetectionCompleteParam & prm)

Callback when the Endpoint has finished performing NAT type detection that
is initiated with natDetectType().

Parameters

• prm - Callback parameters containing the detection result.

void onNatCheckStunServersComplete(const
OnNatCheckStunServersCompleteParam & prm)

Callback when the Endpoint has finished performing STUN server checking
that is initiated with natCheckStunServers().

Parameters

• prm - Callback parameters.

void onTransportState(const OnTransportStateParam & prm)

This callback is called when transport state has changed.

Parameters

• prm - Callback parameters.

void onTimer(const OnTimerParam & prm)

Callback when a timer has fired.

The timer was scheduled by utilTimerSchedule().

Parameters

• prm - Callback parameters.

void onSelectAccount(OnSelectAccountParam & prm)

This callback can be used by application to override the account to be used
to handle an incoming message.

12.1. endpoint.hpp 153

PJSUA2 Documentation, Release 1.0-alpha

Initially, the account to be used will be calculated automatically by the li-
brary. This initial account will be used if application does not implement
this callback, or application sets an invalid account upon returning from this
callback.

Note that currently the incoming messages requiring account assignment are
INVITE, MESSAGE, SUBSCRIBE, and unsolicited NOTIFY. This callback
may be called before the callback of the SIP event itself, i.e: incoming call,
pager, subscription, or unsolicited-event.

Parameters

• prm - Callback parameters.

Public Static Functions

Endpoint & instance()

Retrieve the singleton instance of the endpoint.

Private Functions

void performPendingJobs()

void clearCodecInfoList()

Private Members

LogWriter * writer

AudioMediaVector mediaList

AudDevManager audioDevMgr

CodecInfoVector codecInfoList

bool mainThreadOnly

void * mainThread

unsigned pendingJobSize

std::list< PendingJob * > pendingJobs

Private Static Functions

154 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

void logFunc(int level, const char * data, int len)

void stun_resolve_cb(const pj_stun_resolve_result * result)

void on_timer(pj_timer_heap_t * timer_heap, struct pj_timer_entry * entry)

void on_nat_detect(const pj_stun_nat_detect_result * res)

void on_transport_state(pjsip_transport * tp, pjsip_transport_state state, const
pjsip_transport_state_info * info)

Account * lookupAcc(int acc_id, const char * op)

Call * lookupCall(int call_id, const char * op)

void on_incoming_call(pjsua_acc_id acc_id, pjsua_call_id call_id, pjsip_rx_data *
rdata)

void on_reg_started(pjsua_acc_id acc_id, pj_bool_t renew)

void on_reg_state2(pjsua_acc_id acc_id, pjsua_reg_info * info)

12.1. endpoint.hpp 155

PJSUA2 Documentation, Release 1.0-alpha

void on_incoming_subscribe(pjsua_acc_id acc_id, pjsua_srv_pres * srv_pres,
pjsua_buddy_id buddy_id, const pj_str_t * from, pjsip_rx_data * rdata,
pjsip_status_code * code, pj_str_t * reason, pjsua_msg_data * msg_data)

void on_pager2(pjsua_call_id call_id, const pj_str_t * from, const pj_str_t * to,
const pj_str_t * contact, const pj_str_t * mime_type, const pj_str_t * body,
pjsip_rx_data * rdata, pjsua_acc_id acc_id)

void on_pager_status2(pjsua_call_id call_id, const pj_str_t * to, const pj_str_t *
body, void * user_data, pjsip_status_code status, const pj_str_t * reason,
pjsip_tx_data * tdata, pjsip_rx_data * rdata, pjsua_acc_id acc_id)

void on_typing2(pjsua_call_id call_id, const pj_str_t * from, const pj_str_t * to,
const pj_str_t * contact, pj_bool_t is_typing, pjsip_rx_data * rdata, pjsua_acc_id
acc_id)

void on_mwi_info(pjsua_acc_id acc_id, pjsua_mwi_info * mwi_info)

void on_buddy_state(pjsua_buddy_id buddy_id)

void on_call_state(pjsua_call_id call_id, pjsip_event * e)

void on_call_tsx_state(pjsua_call_id call_id, pjsip_transaction * tsx, pjsip_event *
e)

void on_call_media_state(pjsua_call_id call_id)

156 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

void on_call_sdp_created(pjsua_call_id call_id, pjmedia_sdp_session * sdp,
pj_pool_t * pool, const pjmedia_sdp_session * rem_sdp)

void on_stream_created(pjsua_call_id call_id, pjmedia_stream * strm, unsigned
stream_idx, pjmedia_port ** p_port)

void on_stream_destroyed(pjsua_call_id call_id, pjmedia_stream * strm, unsigned
stream_idx)

void on_dtmf_digit(pjsua_call_id call_id, int digit)

void on_call_transfer_request(pjsua_call_id call_id, const pj_str_t * dst,
pjsip_status_code * code)

void on_call_transfer_request2(pjsua_call_id call_id, const pj_str_t * dst,
pjsip_status_code * code, pjsua_call_setting * opt)

void on_call_transfer_status(pjsua_call_id call_id, int st_code, const pj_str_t *
st_text, pj_bool_t final, pj_bool_t * p_cont)

void on_call_replace_request(pjsua_call_id call_id, pjsip_rx_data * rdata, int *
st_code, pj_str_t * st_text)

12.1. endpoint.hpp 157

PJSUA2 Documentation, Release 1.0-alpha

void on_call_replace_request2(pjsua_call_id call_id, pjsip_rx_data * rdata, int *
st_code, pj_str_t * st_text, pjsua_call_setting * opt)

void on_call_replaced(pjsua_call_id old_call_id, pjsua_call_id new_call_id)

void on_call_rx_offer(pjsua_call_id call_id, const pjmedia_sdp_session * offer,
void * reserved, pjsip_status_code * code, pjsua_call_setting * opt)

pjsip_redirect_op on_call_redirected(pjsua_call_id call_id, const pjsip_uri * target,
const pjsip_event * e)

pj_status_t on_call_media_transport_state(pjsua_call_id call_id, const
pjsua_med_tp_state_info * info)

void on_call_media_event(pjsua_call_id call_id, unsigned med_idx, pjmedia_event
* event)

pjmedia_transport * on_create_media_transport(pjsua_call_id call_id, unsigned
media_idx, pjmedia_transport * base_tp, unsigned flags)

Private Static Attributes

Endpoint * instance_

12.2 account.hpp

PJSUA2 Account operations.

namespace pj

158 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

PJSUA2 API is inside pj namespace.

Typedefs

typedef std::vector< AuthCredInfo > AuthCredInfoVector

Array of SIP credentials.

class AccountRegConfig

Account registration config.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

string registrarUri

This is the URL to be put in the request URI for the registration, and will
look something like “sip:serviceprovider”.

This field should be specified if registration is desired. If the value is empty,
no account registration will be performed.

bool registerOnAdd

Specify whether the account should register as soon as it is added to the UA.

Application can set this to PJ_FALSE and control the registration manually
with pjsua_acc_set_registration().

Default: True

SipHeaderVector headers

The optional custom SIP headers to be put in the registration request.

unsigned timeoutSec

Optional interval for registration, in seconds.

If the value is zero, default interval will be used (PJSUA_REG_INTERVAL,
300 seconds).

unsigned retryIntervalSec

12.2. account.hpp 159

PJSUA2 Documentation, Release 1.0-alpha

Specify interval of auto registration retry upon registration failure (including
caused by transport problem), in second.

Set to 0 to disable auto re-registration. Note that if the registration retry oc-
curs because of transport failure, the first retry will be done after firstRetry-
IntervalSec seconds instead. Also note that the interval will be randomized
slightly by approximately +/- ten seconds to avoid all clients re-registering
at the same time.

See also firstRetryIntervalSec setting.

Default: PJSUA_REG_RETRY_INTERVAL

unsigned firstRetryIntervalSec

This specifies the interval for the first registration retry.

The registration retry is explained in retryIntervalSec. Note that the value
here will also be randomized by +/- ten seconds.

Default: 0

unsigned delayBeforeRefreshSec

Specify the number of seconds to refresh the client registration before the
registration expires.

Default: PJSIP_REGISTER_CLIENT_DELAY_BEFORE_REFRESH, 5
seconds

bool dropCallsOnFail

Specify whether calls of the configured account should be dropped after reg-
istration failure and an attempt of re-registration has also failed.

Default: FALSE (disabled)

unsigned unregWaitSec

Specify the maximum time to wait for unregistration requests to complete
during library shutdown sequence.

Default: PJSUA_UNREG_TIMEOUT

unsigned proxyUse

Specify how the registration uses the outbound and account proxy settings.

This controls if and what Route headers will appear in the REG-
ISTER request of this account. The value is bitmask com-
bination of PJSUA_REG_USE_OUTBOUND_PROXY and PJ-
SUA_REG_USE_ACC_PROXY bits. If the value is set to 0, the REGISTER
request will not use any proxy (i.e. it will not have any Route headers).

Default: 3 (PJSUA_REG_USE_OUTBOUND_PROXY | PJ-
SUA_REG_USE_ACC_PROXY)

class AccountSipConfig

Various SIP settings for the account.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

160 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

AuthCredInfoVector authCreds

Array of credentials.

If registration is desired, normally there should be at least one credential
specified, to successfully authenticate against the service provider. More
credentials can be specified, for example when the requests are expected to
be challenged by the proxies in the route set.

StringVector proxies

Array of proxy servers to visit for outgoing requests.

Each of the entry is translated into one Route URI.

string contactForced

Optional URI to be put as Contact for this account.

It is recommended that this field is left empty, so that the value will be cal-
culated automatically based on the transport address.

string contactParams

Additional parameters that will be appended in the Contact header for this
account.

This will affect the Contact header in all SIP messages sent on behalf of this
account, including but not limited to REGISTER, INVITE, and SUBCRIBE
requests or responses.

The parameters should be preceeded by semicolon, and all strings must be
properly escaped. Example: ”;my-param=X;another-param=Hi%20there”

string contactUriParams

Additional URI parameters that will be appended in the Contact URI for this
account.

This will affect the Contact URI in all SIP messages sent on behalf of this
account, including but not limited to REGISTER, INVITE, and SUBCRIBE
requests or responses.

The parameters should be preceeded by semicolon, and all strings must be
properly escaped. Example: ”;my-param=X;another-param=Hi%20there”

bool authInitialEmpty

12.2. account.hpp 161

PJSUA2 Documentation, Release 1.0-alpha

If this flag is set, the authentication client framework will send an empty
Authorization header in each initial request.

Default is no.

string authInitialAlgorithm

Specify the algorithm to use when empty Authorization header is to be sent
for each initial request (see above)

TransportId transportId

Optionally bind this account to specific transport.

This normally is not a good idea, as account should be able to send requests
using any available transports according to the destination. But some appli-
cation may want to have explicit control over the transport to use, so in that
case it can set this field.

Default: -1 (PJSUA_INVALID_ID)

See

Account::setTransport()

class AccountCallConfig

Account‘s call settings.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

pjsua_call_hold_type holdType

Specify how to offer call hold to remote peer.

Please see the documentation on pjsua_call_hold_type for more info.

Default: PJSUA_CALL_HOLD_TYPE_DEFAULT

pjsua_100rel_use prackUse

Specify how support for reliable provisional response (100rel/ PRACK)
should be used for all sessions in this account.

See the documentation of pjsua_100rel_use enumeration for more info.

162 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Default: PJSUA_100REL_NOT_USED

pjsua_sip_timer_use timerUse

Specify the usage of Session Timers for all sessions.

See the pjsua_sip_timer_use for possible values.

Default: PJSUA_SIP_TIMER_OPTIONAL

unsigned timerMinSESec

Specify minimum Session Timer expiration period, in seconds.

Must not be lower than 90. Default is 90.

unsigned timerSessExpiresSec

Specify Session Timer expiration period, in seconds.

Must not be lower than timerMinSE. Default is 1800.

class AccountPresConfig

Account presence config.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

SipHeaderVector headers

The optional custom SIP headers to be put in the presence subscription re-
quest.

bool publishEnabled

If this flag is set, the presence information of this account will be PUBLISH-
ed to the server where the account belongs.

Default: PJ_FALSE

bool publishQueue

Specify whether the client publication session should queue the PUBLISH
request should there be another PUBLISH transaction still pending.

If this is set to false, the client will return error on the PUBLISH request if
there is another PUBLISH transaction still in progress.

12.2. account.hpp 163

PJSUA2 Documentation, Release 1.0-alpha

Default: PJSIP_PUBLISHC_QUEUE_REQUEST (TRUE)

unsigned publishShutdownWaitMsec

Maximum time to wait for unpublication transaction(s) to complete during
shutdown process, before sending unregistration.

The library tries to wait for the unpublication (un-PUBLISH) to complete
before sending REGISTER request to unregister the account, during library
shutdown process. If the value is set too short, it is possible that the unregis-
tration is sent before unpublication completes, causing unpublication request
to fail.

Value is in milliseconds.

Default: PJSUA_UNPUBLISH_MAX_WAIT_TIME_MSEC (2000)

string pidfTupleId

Optional PIDF tuple ID for outgoing PUBLISH and NOTIFY.

If this value is not specified, a random string will be used.

class AccountMwiConfig

Account MWI (Message Waiting Indication) settings.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

bool enabled

Subscribe to message waiting indication events (RFC 3842).

See also UaConfig.mwiUnsolicitedEnabled setting.

Default: FALSE

unsigned expirationSec

Specify the default expiration time (in seconds) for Message Waiting Indica-
tion (RFC 3842) event subscription.

This must not be zero.

Default: PJSIP_MWI_DEFAULT_EXPIRES (3600)

164 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

class AccountNatConfig

Account‘s NAT (Network Address Translation) settings.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

pjsua_stun_use sipStunUse

Control the use of STUN for the SIP signaling.

Default: PJSUA_STUN_USE_DEFAULT

pjsua_stun_use mediaStunUse

Control the use of STUN for the media transports.

Default: PJSUA_STUN_USE_DEFAULT

bool iceEnabled

Enable ICE for the media transport.

Default: False

int iceMaxHostCands

Set the maximum number of ICE host candidates.

Default: -1 (maximum not set)

bool iceAggressiveNomination

Specify whether to use aggressive nomination.

Default: True

unsigned iceNominatedCheckDelayMsec

For controlling agent if it uses regular nomination, specify the delay to
perform nominated check (connectivity check with USE-CANDIDATE at-
tribute) after all components have a valid pair.

Default value is PJ_ICE_NOMINATED_CHECK_DELAY.

int iceWaitNominationTimeoutMsec

12.2. account.hpp 165

PJSUA2 Documentation, Release 1.0-alpha

For a controlled agent, specify how long it wants to wait (in milliseconds) for
the controlling agent to complete sending connectivity check with nominated
flag set to true for all components after the controlled agent has found that
all connectivity checks in its checklist have been completed and there is at
least one successful (but not nominated) check for every component.

Default value for this option is ICE_CONTROLLED_AGENT_WAIT_NOMINATION_TIMEOUT.
Specify -1 to disable this timer.

bool iceNoRtcp

Disable RTCP component.

Default: False

bool iceAlwaysUpdate

Always send re-INVITE/UPDATE after ICE negotiation regardless of
whether the default ICE transport address is changed or not.

When this is set to False, re-INVITE/UPDATE will be sent only when the
default ICE transport address is changed.

Default: yes

bool turnEnabled

Enable TURN candidate in ICE.

string turnServer

Specify TURN domain name or host name, in in “DOMAIN:PORT” or
“HOST:PORT” format.

pj_turn_tp_type turnConnType

Specify the connection type to be used to the TURN server.

Valid values are PJ_TURN_TP_UDP or PJ_TURN_TP_TCP.

Default: PJ_TURN_TP_UDP

string turnUserName

Specify the username to authenticate with the TURN server.

int turnPasswordType

Specify the type of password.

Currently this must be zero to indicate plain-text password will be used in
the password.

string turnPassword

Specify the password to authenticate with the TURN server.

int contactRewriteUse

This option is used to update the transport address and the Contact header of
REGISTER request.

When this option is enabled, the library will keep track of the public IP ad-
dress from the response of REGISTER request. Once it detects that the ad-
dress has changed, it will unregister current Contact, update the Contact with
transport address learned from Via header, and register a new Contact to the

166 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

registrar. This will also update the public name of UDP transport if STUN is
configured.

See also contactRewriteMethod field.

Default: TRUE

int contactRewriteMethod

Specify how Contact update will be done with the registration, if contac-
tRewriteEnabled is enabled.

The value is bitmask combination of pjsua_contact_rewrite_method. See
also pjsua_contact_rewrite_method.

Value PJSUA_CONTACT_REWRITE_UNREGISTER(1) is the legacy be-
havior.

Default value: PJSUA_CONTACT_REWRITE_METHOD
(PJSUA_CONTACT_REWRITE_NO_UNREG | PJ-
SUA_CONTACT_REWRITE_ALWAYS_UPDATE)

int viaRewriteUse

This option is used to overwrite the “sent-by” field of the Via header for
outgoing messages with the same interface address as the one in the REGIS-
TER request, as long as the request uses the same transport instance as the
previous REGISTER request.

Default: TRUE

int sdpNatRewriteUse

This option controls whether the IP address in SDP should be replaced with
the IP address found in Via header of the REGISTER response, ONLY when
STUN and ICE are not used.

If the value is FALSE (the original behavior), then the local IP address will
be used. If TRUE, and when STUN and ICE are disabled, then the IP address
found in registration response will be used.

Default: PJ_FALSE (no)

int sipOutboundUse

Control the use of SIP outbound feature.

SIP outbound is described in RFC 5626 to enable proxies or registrar to send
inbound requests back to UA using the same connection initiated by the UA
for its registration. This feature is highly useful in NAT-ed deployemtns,
hence it is enabled by default.

Note: currently SIP outbound can only be used with TCP and TLS transports.
If UDP is used for the registration, the SIP outbound feature will be silently
ignored for the account.

Default: TRUE

string sipOutboundInstanceId

Specify SIP outbound (RFC 5626) instance ID to be used by this account.

If empty, an instance ID will be generated based on the hostname of
this agent. If application specifies this parameter, the value will look

12.2. account.hpp 167

PJSUA2 Documentation, Release 1.0-alpha

like “<urn:uuid:00000000-0000-1000-8000-AABBCCDDEEFF>” without
the double-quotes.

Default: empty

string sipOutboundRegId

Specify SIP outbound (RFC 5626) registration ID.

The default value is empty, which would cause the library to automatically
generate a suitable value.

Default: empty

unsigned udpKaIntervalSec

Set the interval for periodic keep-alive transmission for this account.

If this value is zero, keep-alive will be disabled for this account. The keep-
alive transmission will be sent to the registrar’s address, after successful reg-
istration.

Default: 15 (seconds)

string udpKaData

Specify the data to be transmitted as keep-alive packets.

Default: CR-LF

class AccountMediaConfig

Account media config (applicable for both audio and video).

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

TransportConfig transportConfig

Media transport (RTP) configuration.

bool lockCodecEnabled

If remote sends SDP answer containing more than one format or codec in the
media line, send re-INVITE or UPDATE with just one codec to lock which
codec to use.

168 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Default: True (Yes).

bool streamKaEnabled

Specify whether stream keep-alive and NAT hole punching with non-codec-
VAD mechanism (see PJMEDIA_STREAM_ENABLE_KA) is enabled for
this account.

Default: False

pjmedia_srtp_use srtpUse

Specify whether secure media transport should be used for this account.

Valid values are PJMEDIA_SRTP_DISABLED, PJME-
DIA_SRTP_OPTIONAL, and PJMEDIA_SRTP_MANDATORY.

Default: PJSUA_DEFAULT_USE_SRTP

int srtpSecureSignaling

Specify whether SRTP requires secure signaling to be used.

This option is only used when use_srtp option above is non-zero.

Valid values are: 0: SRTP does not require secure signaling 1: SRTP requires
secure transport such as TLS 2: SRTP requires secure end-to-end transport
(SIPS)

Default: PJSUA_DEFAULT_SRTP_SECURE_SIGNALING

pjsua_ipv6_use ipv6Use

Specify whether IPv6 should be used on media.

Default is not used.

class AccountVideoConfig

Account video config.

This will be specified in AccountConfig.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

bool autoShowIncoming

12.2. account.hpp 169

PJSUA2 Documentation, Release 1.0-alpha

Specify whether incoming video should be shown to screen by default.

This applies to incoming call (INVITE), incoming re-INVITE, and incoming
UPDATE requests.

Regardless of this setting, application can detect incoming video by im-
plementing on_call_media_state() callback and enumerating the media
stream(s) with pjsua_call_get_info(). Once incoming video is recognised,
application may retrieve the window associated with the incoming video and
show or hide it with pjsua_vid_win_set_show().

Default: False

bool autoTransmitOutgoing

Specify whether outgoing video should be activated by default when making
outgoing calls and/or when incoming video is detected.

This applies to incoming and outgoing calls, incoming re-INVITE, and in-
coming UPDATE. If the setting is non-zero, outgoing video transmission will
be started as soon as response to these requests is sent (or received).

Regardless of the value of this setting, application can start and stop outgoing
video transmission with pjsua_call_set_vid_strm().

Default: False

unsigned windowFlags

Specify video window’s flags.

The value is a bitmask combination of pjmedia_vid_dev_wnd_flag.

Default: 0

pjmedia_vid_dev_index defaultCaptureDevice

Specify the default capture device to be used by this account.

If vidOutAutoTransmit is enabled, this device will be used for capturing
video.

Default: PJMEDIA_VID_DEFAULT_CAPTURE_DEV

pjmedia_vid_dev_index defaultRenderDevice

Specify the default rendering device to be used by this account.

Default: PJMEDIA_VID_DEFAULT_RENDER_DEV

pjmedia_vid_stream_rc_method rateControlMethod

Rate control method.

Default: PJMEDIA_VID_STREAM_RC_SIMPLE_BLOCKING.

unsigned rateControlBandwidth

Upstream/outgoing bandwidth.

If this is set to zero, the video stream will use codec maximum bitrate setting.

Default: 0 (follow codec maximum bitrate).

class AccountConfig

170 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Account configuration.

Public Functions

AccountConfig()

Default constructor will initialize with default values.

void toPj(pjsua_acc_config & cfg)

This will return a temporary pjsua_acc_config instance, which contents are
only valid as long as this AccountConfig structure remains valid AND no
modifications are done to it AND no further toPj() function call is made.

Any call to toPj() function will invalidate the content of temporary pj-
sua_acc_config that was returned by the previous call.

void fromPj(const pjsua_acc_config & prm, const pjsua_media_config * mcfg)

Initialize from pjsip.

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

int priority

Account priority, which is used to control the order of matching incom-
ing/outgoing requests.

The higher the number means the higher the priority is, and the account will
be matched first.

string idUri

The Address of Record or AOR, that is full SIP URL that identifies the ac-
count.

The value can take name address or URL format, and will look something
like “sip:account@serviceprovider”.

This field is mandatory.

12.2. account.hpp 171

PJSUA2 Documentation, Release 1.0-alpha

AccountRegConfig regConfig

Registration settings.

AccountSipConfig sipConfig

SIP settings.

AccountCallConfig callConfig

Call settings.

AccountPresConfig presConfig

Presence settings.

AccountMwiConfig mwiConfig

MWI (Message Waiting Indication) settings.

AccountNatConfig natConfig

NAT settings.

AccountMediaConfig mediaConfig

Media settings (applicable for both audio and video).

AccountVideoConfig videoConfig

Video settings.

class AccountInfo

Account information.

Application can query the account information by calling Account::getInfo().

Public Functions

void fromPj(const pjsua_acc_info & pai)

Import from pjsip data.

Public Members

pjsua_acc_id id

The account ID.

bool isDefault

Flag to indicate whether this is the default account.

string uri

Account URI.

bool regIsConfigured

Flag to tell whether this account has registration setting (reg_uri is not
empty).

bool regIsActive

Flag to tell whether this account is currently registered (has active registra-
tion session).

int regExpiresSec

An up to date expiration interval for account registration session.

172 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

pjsip_status_code regStatus

Last registration status code.

If status code is zero, the account is currently not registered. Any other value
indicates the SIP status code of the registration.

string regStatusText

String describing the registration status.

pj_status_t regLastErr

Last registration error code.

When the status field contains a SIP status code that indicates a registration
failure, last registration error code contains the error code that causes the
failure. In any other case, its value is zero.

bool onlineStatus

Presence online status for this account.

string onlineStatusText

Presence online status text.

class OnIncomingCallParam

This structure contains parameters for onIncomingCall() account callback.

Public Members

int callId

The library call ID allocated for the new call.

SipRxData rdata

The incoming INVITE request.

class OnRegStartedParam

This structure contains parameters for onRegStarted() account callback.

Public Members

bool renew

True for registration and False for unregistration.

class OnRegStateParam

This structure contains parameters for onRegState() account callback.

Public Members

pj_status_t status

Registration operation status.

pjsip_status_code code

SIP status code received.

string reason

SIP reason phrase received.

SipRxData rdata

12.2. account.hpp 173

PJSUA2 Documentation, Release 1.0-alpha

The incoming message.

int expiration

Next expiration interval.

class OnIncomingSubscribeParam

This structure contains parameters for onIncomingSubscribe() callback.

Public Members

void * srvPres

Server presence subscription instance.

If application delays the acceptance of the request, it will need to specify this
object when calling Account::presNotify().

string fromUri

Sender URI.

SipRxData rdata

The incoming message.

pjsip_status_code code

The status code to respond to the request.

The default value is 200. Application may set this to other final status code
to accept or reject the request.

string reason

The reason phrase to respond to the request.

SipTxOption txOption

Additional data to be sent with the response, if any.

class OnInstantMessageParam

Parameters for onInstantMessage() account callback.

Public Members

string fromUri

Sender From URI.

string toUri

To URI of the request.

string contactUri

Contact URI of the sender.

string contentType

MIME type of the message body.

string msgBody

The message body.

SipRxData rdata

The whole message.

174 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

class OnInstantMessageStatusParam

Parameters for onInstantMessageStatus() account callback.

Public Members

Token userData

Token or a user data that was associated with the pager transmission.

string toUri

Destination URI.

string msgBody

The message body.

pjsip_status_code code

The SIP status code of the transaction.

string reason

The reason phrase of the transaction.

SipRxData rdata

The incoming response that causes this callback to be called.

If the transaction fails because of time out or transport error, the content will
be empty.

class OnTypingIndicationParam

Parameters for onTypingIndication() account callback.

Public Members

string fromUri

Sender/From URI.

string toUri

To URI.

string contactUri

The Contact URI.

bool isTyping

Boolean to indicate if sender is typing.

SipRxData rdata

The whole message buffer.

class OnMwiInfoParam

Parameters for onMwiInfo() account callback.

Public Members

pjsip_evsub_state state

MWI subscription state.

SipRxData rdata

12.2. account.hpp 175

PJSUA2 Documentation, Release 1.0-alpha

The whole message buffer.

class PresNotifyParam

Parameters for presNotify() account method.

Public Members

void * srvPres

Server presence subscription instance.

pjsip_evsub_state state

Server presence subscription state to set.

string stateStr

Optionally specify the state string name, if state is not “active”, “pending”,
or “terminated”.

string reason

If the new state is PJSIP_EVSUB_STATE_TERMINATED, optionally spec-
ify the termination reason.

bool withBody

If the new state is PJSIP_EVSUB_STATE_TERMINATED, this specifies
whether the NOTIFY request should contain message body containing ac-
count’s presence information.

SipTxOption txOption

Optional list of headers to be sent with the NOTIFY request.

class FindBuddyMatch

Wrapper class for Buddy matching algo.

Default algo is a simple substring lookup of search-token in the Buddy URIs, with case sensi-
tive. Application can implement its own matching algo by overriding this class and specifying
its instance in Account::findBuddy().

Public Functions

bool match(const string & token, const Buddy & buddy)

Default algo implementation.

~FindBuddyMatch()

Destructor.

class Account

Account.

Public Functions

Account()

Constructor.

176 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

~Account()

Destructor.

Note that if the account is deleted, it will also delete the corresponding ac-
count in the PJSUA-LIB.

void create(const AccountConfig & cfg, bool make_default = false)

Create the account.

Parameters

• cfg - The account config.

• make_default - Make this the default account.

void modify(const AccountConfig & cfg)

Modify the account to use the specified account configuration.

Depending on the changes, this may cause unregistration or reregistration on
the account.

Parameters

• cfg - New account config to be applied to the account.

bool isValid()

Check if this account is still valid.

Return

True if it is.

void setDefault()

Set this as default account to be used when incoming and outgoing requests
don’t match any accounts.

Return

PJ_SUCCESS on success.

bool isDefault()

Check if this account is the default account.

Default account will be used for incoming and outgoing requests that don’t
match any other accounts.

12.2. account.hpp 177

PJSUA2 Documentation, Release 1.0-alpha

Return

True if this is the default account.

int getId()

Get PJSUA-LIB account ID or index associated with this account.

Return

Integer greater than or equal to zero.

AccountInfo getInfo()

Get account info.

Return

Account info.

void setRegistration(bool renew)

Update registration or perform unregistration.

Application normally only needs to call this function if it wants to manually
update the registration or to unregister from the server.

Parameters

• renew - If False, this will start unregistration process.

void setOnlineStatus(const PresenceStatus & pres_st)

Set or modify account’s presence online status to be advertised to re-
mote/presence subscribers.

This would trigger the sending of outgoing NOTIFY request if there are
server side presence subscription for this account, and/or outgoing PUBLISH
if presence publication is enabled for this account.

Parameters

• pres_st - Presence online status.

void setTransport(TransportId tp_id)

Lock/bind this account to a specific transport/listener.

Normally application shouldn’t need to do this, as transports will be selected
automatically by the library according to the destination.

178 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

When account is locked/bound to a specific transport, all outgoing requests
from this account will use the specified transport (this includes SIP registra-
tion, dialog (call and event subscription), and out-of-dialog requests such as
MESSAGE).

Note that transport id may be specified in AccountConfig too.

Parameters

• tp_id - The transport ID.

void presNotify(const PresNotifyParam & prm)

Send NOTIFY to inform account presence status or to terminate server side
presence subscription.

If application wants to reject the incoming request, it should set the param
PresNotifyParam.state to PJSIP_EVSUB_STATE_TERMINATED.

Parameters

• prm - The sending NOTIFY parameter.

const BuddyVector & enumBuddies()

Enumerate all buddies of the account.

Return

The buddy list.

Buddy * findBuddy(string uri, FindBuddyMatch * buddy_match = NULL)

Find a buddy in the buddy list with the specified URI.

Exception: if buddy is not found, PJ_ENOTFOUND will be thrown.

Return

The pointer to buddy.

Parameters

• uri - The buddy URI.

• buddy_match - The buddy match algo.

void addBuddy(Buddy * buddy)

An internal function to add a Buddy to Account buddy list.

This function must never be used by application.

void removeBuddy(Buddy * buddy)

12.2. account.hpp 179

PJSUA2 Documentation, Release 1.0-alpha

An internal function to remove a Buddy from Account buddy list.

This function must never be used by application.

void onIncomingCall(OnIncomingCallParam & prm)

Notify application on incoming call.

Parameters

• prm - Callback parameter.

void onRegStarted(OnRegStartedParam & prm)

Notify application when registration or unregistration has been initiated.

Note that this only notifies the initial registration and unregistration. Once
registration session is active, subsequent refresh will not cause this callback
to be called.

Parameters

• prm - Callback parameter.

void onRegState(OnRegStateParam & prm)

Notify application when registration status has changed.

Application may then query the account info to get the registration details.

Parameters

• prm - Callback parameter.

void onIncomingSubscribe(OnIncomingSubscribeParam & prm)

Notification when incoming SUBSCRIBE request is received.

Application may use this callback to authorize the incoming subscribe re-
quest (e.g. ask user permission if the request should be granted).

If this callback is not implemented, all incoming presence subscription re-
quests will be accepted.

If this callback is implemented, application has several choices on what to
do with the incoming request:

Any IncomingSubscribeParam.code other than 200 and 202 will be treated
as 200.

Application MUST return from this callback immediately (e.g. it must not
block in this callback while waiting for user confirmation).

Parameters

• prm - Callback parameter.

180 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

void onInstantMessage(OnInstantMessageParam & prm)

Notify application on incoming instant message or pager (i.e.

MESSAGE request) that was received outside call context.

Parameters

• prm - Callback parameter.

void onInstantMessageStatus(OnInstantMessageStatusParam & prm)

Notify application about the delivery status of outgoing pager/instant mes-
sage (i.e.

MESSAGE) request.

Parameters

• prm - Callback parameter.

void onTypingIndication(OnTypingIndicationParam & prm)

Notify application about typing indication.

Parameters

• prm - Callback parameter.

void onMwiInfo(OnMwiInfoParam & prm)

Notification about MWI (Message Waiting Indication) status change.

This callback can be called upon the status change of the SUBSCRIBE re-
quest (for example, 202/Accepted to SUBSCRIBE is received) or when a
NOTIFY reqeust is received.

Parameters

• prm - Callback parameter.

Public Static Functions

Account * lookup(int acc_id)

Get the Account class for the specified account Id.

Return

The Account instance or NULL if not found.

Parameters

• acc_id - The account ID to lookup

Private Members

pjsua_acc_id id

12.2. account.hpp 181

PJSUA2 Documentation, Release 1.0-alpha

string tmpReason

BuddyVector buddyList

Friends

friend class Endpoint

12.3 media.hpp

PJSUA2 media operations.

namespace pj

PJSUA2 API is inside pj namespace.

Typedefs

typedef std::vector< MediaFormat * > MediaFormatVector

Array of MediaFormat.

typedef void * MediaPort

Media port, corresponds to pjmedia_port.

typedef std::vector< AudioMedia * > AudioMediaVector

Array of Audio Media.

typedef std::vector< AudioDevInfo * > AudioDevInfoVector

Array of audio device info.

typedef std::vector< CodecInfo * > CodecInfoVector

Array of codec info.

class MediaFormat

This structure contains all the information needed to completely describe a media.

Public Members

pj_uint32_t id

The format id that specifies the audio sample or video pixel format.

Some well known formats ids are declared in pjmedia_format_id enumera-
tion.

See

pjmedia_format_id

pjmedia_type type

The top-most type of the media, as an information.

class MediaFormatAudio

182 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

This structure describe detail information about an audio media.

Public Functions

void fromPj(const pjmedia_format & format)

Construct from pjmedia_format.

pjmedia_format toPj()

Export to pjmedia_format.

Public Members

unsigned clockRate

Audio clock rate in samples or Hz.

unsigned channelCount

Number of channels.

unsigned frameTimeUsec

Frame interval, in microseconds.

unsigned bitsPerSample

Number of bits per sample.

pj_uint32_t avgBps

Average bitrate.

pj_uint32_t maxBps

Maximum bitrate.

class MediaFormatVideo

This structure describe detail information about an video media.

Public Members

unsigned width

Video width.

unsigned height

Video height.

int fpsNum

Frames per second numerator.

int fpsDenum

Frames per second denumerator.

pj_uint32_t avgBps

Average bitrate.

pj_uint32_t maxBps

Maximum bitrate.

12.3. media.hpp 183

PJSUA2 Documentation, Release 1.0-alpha

class ConfPortInfo

This structure descibes information about a particular media port that has been registered into
the conference bridge.

Public Functions

void fromPj(const pjsua_conf_port_info & port_info)

Construct from pjsua_conf_port_info.

Public Members

int portId

Conference port number.

string name

Port name.

MediaFormatAudio format

Media audio format information.

float txLevelAdj

Tx level adjustment.

Value 1.0 means no adjustment, value 0 means the port is muted, value 2.0
means the level is amplified two times.

float rxLevelAdj

Rx level adjustment.

Value 1.0 means no adjustment, value 0 means the port is muted, value 2.0
means the level is amplified two times.

IntVector listeners

Array of listeners (in other words, ports where this port is transmitting to.

class Media

Media.

Public Functions

~Media()

Virtual destructor.

pjmedia_type getType()

Get type of the media.

Return

The media type.

Protected Functions

Media(pjmedia_type med_type)

Constructor.

184 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Private Members

pjmedia_type type

Media type.

class AudioMedia

Audio Media.

Public Functions

ConfPortInfo getPortInfo()

Get information about the specified conference port.

int getPortId()

Get port Id.

void startTransmit(const AudioMedia & sink)

Establish unidirectional media flow to sink.

This media port will act as a source, and it may transmit to multiple desti-
nations/sink. And if multiple sources are transmitting to the same sink, the
media will be mixed together. Source and sink may refer to the same Media,
effectively looping the media.

If bidirectional media flow is desired, application needs to call this method
twice, with the second one called from the opposite source media.

Parameters

• sink - The destination Media.

void stopTransmit(const AudioMedia & sink)

Stop media flow to destination/sink port.

Parameters

• sink - The destination media.

void adjustRxLevel(float level)

Adjust the signal level to be transmitted from the bridge to this media port
by making it louder or quieter.

Parameters

• level - Signal level adjustment. Value 1.0 means no level adjustment,
while value 0 means to mute the port.

12.3. media.hpp 185

PJSUA2 Documentation, Release 1.0-alpha

void adjustTxLevel(float level)

Adjust the signal level to be received from this media port (to the bridge) by
making it louder or quieter.

Parameters

• level - Signal level adjustment. Value 1.0 means no level adjustment,
while value 0 means to mute the port.

unsigned getRxLevel()

Get the last received signal level.

Return

Signal level in percent.

unsigned getTxLevel()

Get the last transmitted signal level.

Return

Signal level in percent.

~AudioMedia()

Virtual Destructor.

Public Static Functions

ConfPortInfo getPortInfoFromId(int port_id)

Get information from specific port id.

AudioMedia * typecastFromMedia(Media * media)

Typecast from base class Media.

This is useful for application written in language that does not support down-
casting such as Python.

Return

The object as AudioMedia instance

Parameters

• media - The object to be downcasted

Protected Functions

AudioMedia()

Default Constructor.

186 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

void registerMediaPort(MediaPort port)

This method needs to be called by descendants of this class to register the
media port created to the conference bridge and Endpoint‘s media list.

param port the media port to be registered to the conference bridge.

void unregisterMediaPort()

This method needs to be called by descendants of this class to remove the
media port from the conference bridge and Endpoint‘s media list.

Descendant should only call this method if it has registered the media with
the previous call to registerMediaPort().

Protected Attributes

int id

Conference port Id.

Private Functions

unsigned getSignalLevel(bool is_rx = true)

Private Members

pj_caching_pool mediaCachingPool

pj_pool_t * mediaPool

class AudioMediaPlayer

Audio Media Player.

Public Functions

AudioMediaPlayer()

Constructor.

void createPlayer(const string & file_name, unsigned options = 0)

Create a file player, and automatically add this player to the conference
bridge.

Parameters

• file_name - The filename to be played. Currently only WAV files
are supported, and the WAV file MUST be formatted as 16bit PCM
mono/single channel (any clock rate is supported).

• options - Optional option flag. Application may specify PJME-
DIA_FILE_NO_LOOP to prevent playback loop.

12.3. media.hpp 187

PJSUA2 Documentation, Release 1.0-alpha

void createPlaylist(const StringVector & file_names, const string & label = “”,
unsigned options = 0)

Create a file playlist media port, and automatically add the port to the con-
ference bridge.

Parameters

• file_names - Array of file names to be added to the play list. Note
that the files must have the same clock rate, number of channels, and
number of bits per sample.

• label - Optional label to be set for the media port.

• options - Optional option flag. Application may specify PJME-
DIA_FILE_NO_LOOP to prevent looping.

void setPos(pj_uint32_t samples)

Set playback position.

This operation is not valid for playlist.

Parameters

• samples - The desired playback position, in samples.

~AudioMediaPlayer()

Virtual destructor.

Public Static Functions

AudioMediaPlayer * typecastFromAudioMedia(AudioMedia * media)

Typecast from base class AudioMedia.

This is useful for application written in language that does not support down-
casting such as Python.

Return

The object as AudioMediaPlayer instance

Parameters

• media - The object to be downcasted

Private Members

int playerId

Player Id.

class AudioMediaRecorder

Audio Media Recorder.

Public Functions

AudioMediaRecorder()

188 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Constructor.

void createRecorder(const string & file_name, unsigned enc_type = 0, pj_ssize_t
max_size = 0, unsigned options = 0)

Create a file recorder, and automatically connect this recorder to the confer-
ence bridge.

The recorder currently supports recording WAV file. The type of the recorder
to use is determined by the extension of the file (e.g. ”.wav”).

Parameters

• file_name - Output file name. The function will determine the de-
fault format to be used based on the file extension. Currently ”.wav” is
supported on all platforms.

• enc_type - Optionally specify the type of encoder to be used to com-
press the media, if the file can support different encodings. This value
must be zero for now.

• max_size - Maximum file size. Specify zero or -1 to remove size
limitation. This value must be zero or -1 for now.

• options - Optional options, which can be used to spec-
ify the recording file format. Supported options are PJME-
DIA_FILE_WRITE_PCM, PJMEDIA_FILE_WRITE_ALAW,
and PJMEDIA_FILE_WRITE_ULAW. Default is zero or PJME-
DIA_FILE_WRITE_PCM.

~AudioMediaRecorder()

Virtual destructor.

Public Static Functions

AudioMediaRecorder * typecastFromAudioMedia(AudioMedia * media)

Typecast from base class AudioMedia.

This is useful for application written in language that does not support down-
casting such as Python.

Return

The object as AudioMediaRecorder instance

Parameters

• media - The object to be downcasted

Private Members

int recorderId

Recorder Id.

class AudioDevInfo

12.3. media.hpp 189

PJSUA2 Documentation, Release 1.0-alpha

Audio device information structure.

Public Functions

void fromPj(const pjmedia_aud_dev_info & dev_info)

Construct from pjmedia_aud_dev_info.

~AudioDevInfo()

Destructor.

Public Members

string name

The device name.

unsigned inputCount

Maximum number of input channels supported by this device.

If the value is zero, the device does not support input operation (i.e. it is a
playback only device).

unsigned outputCount

Maximum number of output channels supported by this device.

If the value is zero, the device does not support output operation (i.e. it is an
input only device).

unsigned defaultSamplesPerSec

Default sampling rate.

string driver

The underlying driver name.

unsigned caps

Device capabilities, as bitmask combination of pjmedia_aud_dev_cap.

unsigned routes

Supported audio device routes, as bitmask combination of pjme-
dia_aud_dev_route.

The value may be zero if the device does not support audio routing.

MediaFormatVector extFmt

Array of supported extended audio formats.

class AudDevManager

Audio device manager.

Public Functions

int getCaptureDev()

Get currently active capture sound devices.

If sound devices has not been created, it is possible that the function returns
-1 as device IDs.

190 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Return

Device ID of the capture device.

AudioMedia & getCaptureDevMedia()

Get the AudioMedia of the capture audio device.

Return

Audio media for the capture device.

int getPlaybackDev()

Get currently active playback sound devices.

If sound devices has not been created, it is possible that the function returns
-1 as device IDs.

Return

Device ID of the playback device.

AudioMedia & getPlaybackDevMedia()

Get the AudioMedia of the speaker/playback audio device.

Return

Audio media for the speaker/playback device.

void setCaptureDev(int capture_dev)

Select or change capture sound device.

Application may call this function at any time to replace current sound de-
vice.

Parameters

• capture_dev - Device ID of the capture device.

void setPlaybackDev(int playback_dev)

Select or change playback sound device.

Application may call this function at any time to replace current sound de-
vice.

Parameters

• playback_dev - Device ID of the playback device.

12.3. media.hpp 191

PJSUA2 Documentation, Release 1.0-alpha

const AudioDevInfoVector & enumDev()

Enum all audio devices installed in the system.

Return

The list of audio device info.

void setNullDev()

Set pjsua to use null sound device.

The null sound device only provides the timing needed by the conference
bridge, and will not interract with any hardware.

MediaPort * setNoDev()

Disconnect the main conference bridge from any sound devices, and let ap-
plication connect the bridge to it’s own sound device/master port.

Return

The port interface of the conference bridge, so that application can connect
this to it’s own sound device or master port.

void setEcOptions(unsigned tail_msec, unsigned options)

Change the echo cancellation settings.

The behavior of this function depends on whether the sound device is cur-
rently active, and if it is, whether device or software AEC is being used.

If the sound device is currently active, and if the device supports AEC, this
function will forward the change request to the device and it will be up to the
device on whether support the request. If software AEC is being used (the
software EC will be used if the device does not support AEC), this function
will change the software EC settings. In all cases, the setting will be saved
for future opening of the sound device.

If the sound device is not currently active, this will only change the default
AEC settings and the setting will be applied next time the sound device is
opened.

Parameters

• tail_msec - The tail length, in miliseconds. Set to zero to disable
AEC.

• options - Options to be passed to pjmedia_echo_create(). Normally
the value should be zero.

unsigned getEcTail()

192 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Get current echo canceller tail length.

Return

The EC tail length in milliseconds, If AEC is disabled, the value will be
zero.

bool sndIsActive()

Check whether the sound device is currently active.

The sound device may be inactive if the application has set the auto close
feature to non-zero (the sndAutoCloseTime setting in MediaConfig), or if
null sound device or no sound device has been configured via the setNoDev()
function.

void refreshDevs()

Refresh the list of sound devices installed in the system.

This method will only refresh the list of audio device so all active audio
streams will be unaffected. After refreshing the device list, application
MUST make sure to update all index references to audio devices before call-
ing any method that accepts audio device index as its parameter.

unsigned getDevCount()

Get the number of sound devices installed in the system.

Return

The number of sound devices installed in the system.

AudioDevInfo getDevInfo(int id)

Get device information.

Return

The device information which will be filled in by this method once it re-
turns successfully.

Parameters

• id - The audio device ID.

int lookupDev(const string & drv_name, const string & dev_name)

Lookup device index based on the driver and device name.

12.3. media.hpp 193

PJSUA2 Documentation, Release 1.0-alpha

Return

The device ID. If the device is not found, Error will be thrown.

Parameters

• drv_name - The driver name.

• dev_name - The device name.

string capName(pjmedia_aud_dev_cap cap)

Get string info for the specified capability.

Return

Capability name.

Parameters

• cap - The capability ID.

void setExtFormat(const MediaFormatAudio & format, bool keep = true)

This will configure audio format capability (other than PCM) to the sound
device being used.

If sound device is currently active, the method will forward the setting to the
sound device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_EXT_FORMAT capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any
devices, even when application has changed the sound device to be used.

Parameters

• format - The audio format.

• keep - Specify whether the setting is to be kept for future use.

MediaFormatAudio getExtFormat()

Get the audio format capability (other than PCM) of the sound device being
used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_EXT_FORMAT capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

194 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Return

The audio format.

void setInputLatency(unsigned latency_msec, bool keep = true)

This will configure audio input latency control or query capability to the
sound device being used.

If sound device is currently active, the method will forward the setting to the
sound device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_LATENCY capability in AudioDev-
Info.caps flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any
devices, even when application has changed the sound device to be used.

Parameters

• latency_msec - The input latency.

• keep - Specify whether the setting is to be kept for future use.

unsigned getInputLatency()

Get the audio input latency control or query capability of the sound device
being used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_LATENCY capability in AudioDev-
Info.caps flags, otherwise Error will be thrown.

Return

The audio input latency.

void setOutputLatency(unsigned latency_msec, bool keep = true)

This will configure audio output latency control or query capability to the
sound device being used.

If sound device is currently active, the method will forward the setting to the
sound device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_LATENCY capability in AudioDev-
Info.caps flags, otherwise Error will be thrown.

12.3. media.hpp 195

PJSUA2 Documentation, Release 1.0-alpha

Note that in case the setting is kept for future use, it will be applied to any
devices, even when application has changed the sound device to be used.

Parameters

• latency_msec - The output latency.

• keep - Specify whether the setting is to be kept for future use.

unsigned getOutputLatency()

Get the audio output latency control or query capability of the sound device
being used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_LATENCY capability in AudioDev-
Info.caps flags, otherwise Error will be thrown.

Return

The audio output latency.

void setInputVolume(unsigned volume, bool keep = true)

This will configure audio input volume level capability to the sound device
being used.

If sound device is currently active, the method will forward the setting to the
sound device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_VOLUME_SETTING capability in
AudioDevInfo.caps flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any
devices, even when application has changed the sound device to be used.

Parameters

• volume - The input volume level, in percent.

• keep - Specify whether the setting is to be kept for future use.

unsigned getInputVolume()

Get the audio input volume level capability of the sound device being used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

196 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_VOLUME_SETTING capability in
AudioDevInfo.caps flags, otherwise Error will be thrown. *

Return

The audio input volume level, in percent.

void setOutputVolume(unsigned volume, bool keep = true)

This will configure audio output volume level capability to the sound device
being used.

If sound device is currently active, the method will forward the setting to the
sound device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_VOLUME_SETTING capability in
AudioDevInfo.caps flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any
devices, even when application has changed the sound device to be used.

Parameters

• volume - The output volume level, in percent.

• keep - Specify whether the setting is to be kept for future use.

unsigned getOutputVolume()

Get the audio output volume level capability of the sound device being used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_VOLUME_SETTING capability in
AudioDevInfo.caps flags, otherwise Error will be thrown.

Return

The audio output volume level, in percent.

unsigned getInputSignal()

Get the audio input signal level capability of the sound device being used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

12.3. media.hpp 197

PJSUA2 Documentation, Release 1.0-alpha

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_SIGNAL_METER capability in Au-
dioDevInfo.caps flags, otherwise Error will be thrown.

Return

The audio input signal level, in percent.

unsigned getOutputSignal()

Get the audio output signal level capability of the sound device being used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_SIGNAL_METER capability in
AudioDevInfo.caps flags, otherwise Error will be thrown.

Return

The audio output signal level, in percent.

void setInputRoute(pjmedia_aud_dev_route route, bool keep = true)

This will configure audio input route capability to the sound device being
used.

If sound device is currently active, the method will forward the setting to the
sound device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_ROUTE capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any
devices, even when application has changed the sound device to be used.

Parameters

• route - The audio input route.

• keep - Specify whether the setting is to be kept for future use.

pjmedia_aud_dev_route getInputRoute()

Get the audio input route capability of the sound device being used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

198 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_INPUT_ROUTE capability in AudioDevInfo.caps
flags, otherwise Error will be thrown.

Return

The audio input route.

void setOutputRoute(pjmedia_aud_dev_route route, bool keep = true)

This will configure audio output route capability to the sound device being
used.

If sound device is currently active, the method will forward the setting to the
sound device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_ROUTE capability in AudioDev-
Info.caps flags, otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any
devices, even when application has changed the sound device to be used.

Parameters

• route - The audio output route.

• keep - Specify whether the setting is to be kept for future use.

pjmedia_aud_dev_route getOutputRoute()

Get the audio output route capability of the sound device being used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_OUTPUT_ROUTE capability in AudioDev-
Info.caps flags, otherwise Error will be thrown.

Return

The audio output route.

void setVad(bool enable, bool keep = true)

This will configure audio voice activity detection capability to the sound
device being used.

If sound device is currently active, the method will forward the setting to the
sound device instance to be applied immediately, if it supports it.

12.3. media.hpp 199

PJSUA2 Documentation, Release 1.0-alpha

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_VAD capability in AudioDevInfo.caps flags,
otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any
devices, even when application has changed the sound device to be used.

Parameters

• enable - Enable/disable voice activity detection feature. Set true to
enable.

• keep - Specify whether the setting is to be kept for future use.

bool getVad()

Get the audio voice activity detection capability of the sound device being
used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_VAD capability in AudioDevInfo.caps flags,
otherwise Error will be thrown.

Return

The audio voice activity detection feature.

void setCng(bool enable, bool keep = true)

This will configure audio comfort noise generation capability to the sound
device being used.

If sound device is currently active, the method will forward the setting to the
sound device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_CNG capability in AudioDevInfo.caps flags,
otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any
devices, even when application has changed the sound device to be used.

Parameters

• enable - Enable/disable comfort noise generation feature. Set true to
enable.

• keep - Specify whether the setting is to be kept for future use.

bool getCng()

200 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Get the audio comfort noise generation capability of the sound device being
used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_CNG capability in AudioDevInfo.caps flags,
otherwise Error will be thrown.

Return

The audio comfort noise generation feature.

void setPlc(bool enable, bool keep = true)

This will configure audio packet loss concealment capability to the sound
device being used.

If sound device is currently active, the method will forward the setting to the
sound device instance to be applied immediately, if it supports it.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_PLC capability in AudioDevInfo.caps flags,
otherwise Error will be thrown.

Note that in case the setting is kept for future use, it will be applied to any
devices, even when application has changed the sound device to be used.

Parameters

• enable - Enable/disable packet loss concealment feature. Set true to
enable.

• keep - Specify whether the setting is to be kept for future use.

bool getPlc()

Get the audio packet loss concealment capability of the sound device being
used.

If sound device is currently active, the method will forward the request to the
sound device. If sound device is currently inactive, and if application had
previously set the setting and mark the setting as kept, then that setting will
be returned. Otherwise, this method will raise error.

This method is only valid if the device has PJME-
DIA_AUD_DEV_CAP_PLC capability in AudioDevInfo.caps flags,
otherwise Error will be thrown.

Return

The audio packet loss concealment feature.

Private Functions

AudDevManager()

12.3. media.hpp 201

PJSUA2 Documentation, Release 1.0-alpha

Constructor.

~AudDevManager()

Destructor.

void clearAudioDevList()

int getActiveDev(bool is_capture)

Private Members

AudioDevInfoVector audioDevList

AudioMedia * devMedia

Friends

friend class Endpoint

class CodecInfo

This structure describes codec information.

Public Functions

void fromPj(const pjsua_codec_info & codec_info)

Construct from pjsua_codec_info.

Public Members

string codecId

Codec unique identification.

pj_uint8_t priority

Codec priority (integer 0-255).

string desc

Codec description.

202 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

12.4 call.hpp

PJSUA2 Call manipulation.

namespace pj

PJSUA2 API is inside pj namespace.

Typedefs

typedef void * CodecParam

Codec parameters, corresponds to pjmedia_codec_param or pjme-
dia_vid_codec_param.

typedef void * MediaStream

Media stream, corresponds to pjmedia_stream.

typedef void * MediaTransport

Media transport, corresponds to pjmedia_transport.

typedef std::vector< CallMediaInfo > CallMediaInfoVector

Array of call media info.

class MathStat

This structure describes statistics state.

Public Functions

MathStat()

Default constructor.

void fromPj(const pj_math_stat & prm)

Convert from pjsip.

Public Members

int n

number of samples

int max

maximum value

int min

minimum value

int last

last value

int mean

mean

class RtcpStreamStat

12.4. call.hpp 203

PJSUA2 Documentation, Release 1.0-alpha

Unidirectional RTP stream statistics.

Public Functions

void fromPj(const pjmedia_rtcp_stream_stat & prm)

Convert from pjsip.

Public Members

TimeVal update

Time of last update.

unsigned updateCount

Number of updates (to calculate avg)

unsigned pkt

Total number of packets.

unsigned bytes

Total number of payload/bytes.

unsigned discard

Total number of discarded packets.

unsigned loss

Total number of packets lost.

unsigned reorder

Total number of out of order packets.

unsigned dup

Total number of duplicates packets.

MathStat lossPeriodUsec

Loss period statistics.

unsigned burst

Burst/sequential packet lost detected.

unsigned random

Random packet lost detected.

struct pj::RtcpStreamStat::@0 lossType

Types of loss detected.

MathStat jitterUsec

Jitter statistics.

class RtcpSdes

RTCP SDES structure.

Public Functions

void fromPj(const pjmedia_rtcp_sdes & prm)

Convert from pjsip.

204 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Public Members

string cname

RTCP SDES type CNAME.

string name

RTCP SDES type NAME.

string email

RTCP SDES type EMAIL.

string phone

RTCP SDES type PHONE.

string loc

RTCP SDES type LOC.

string tool

RTCP SDES type TOOL.

string note

RTCP SDES type NOTE.

class RtcpStat

Bidirectional RTP stream statistics.

Public Functions

void fromPj(const pjmedia_rtcp_stat & prm)

Convert from pjsip.

Public Members

TimeVal start

Time when session was created.

RtcpStreamStat txStat

Encoder stream statistics.

RtcpStreamStat rxStat

Decoder stream statistics.

MathStat rttUsec

Round trip delay statistic.

pj_uint32_t rtpTxLastTs

Last TX RTP timestamp.

pj_uint16_t rtpTxLastSeq

Last TX RTP sequence.

MathStat rxIpdvUsec

Statistics of IP packet delay variation in receiving direction.

It is only used when PJMEDIA_RTCP_STAT_HAS_IPDV is set to non-zero.

12.4. call.hpp 205

PJSUA2 Documentation, Release 1.0-alpha

MathStat rxRawJitterUsec

Statistic of raw jitter in receiving direction.

It is only used when PJMEDIA_RTCP_STAT_HAS_RAW_JITTER is set to
non-zero.

RtcpSdes peerSdes

Peer SDES.

class JbufState

This structure describes jitter buffer state.

Public Functions

void fromPj(const pjmedia_jb_state & prm)

Convert from pjsip.

Public Members

unsigned frameSize

Individual frame size, in bytes.

unsigned minPrefetch

Minimum allowed prefetch, in frms.

unsigned maxPrefetch

Maximum allowed prefetch, in frms.

unsigned burst

Current burst level, in frames.

unsigned prefetch

Current prefetch value, in frames.

unsigned size

Current buffer size, in frames.

unsigned avgDelayMsec

Average delay, in ms.

unsigned minDelayMsec

Minimum delay, in ms.

unsigned maxDelayMsec

Maximum delay, in ms.

unsigned devDelayMsec

Standard deviation of delay, in ms.

unsigned avgBurst

Average burst, in frames.

unsigned lost

Number of lost frames.

206 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

unsigned discard

Number of discarded frames.

unsigned empty

Number of empty on GET events.

class SdpSession

This structure describes SDP session description.

It corresponds to the pjmedia_sdp_session structure.

Public Functions

void fromPj(const pjmedia_sdp_session & sdp)

Convert from pjsip.

Public Members

string wholeSdp

The whole SDP as a string.

void * pjSdpSession

Pointer to its original pjmedia_sdp_session.

Only valid when the struct is converted from PJSIP’s pjmedia_sdp_session.

class MediaFmtChangedEvent

This structure describes a media format changed event.

Public Members

unsigned newWidth

The new width.

unsigned newHeight

The new height.

class MediaEvent

This structure describes a media event.

It corresponds to the pjmedia_event structure.

Public Functions

void fromPj(const pjmedia_event & ev)

Convert from pjsip.

Public Members

pjmedia_event_type type

The event type.

MediaFmtChangedEvent fmtChanged

Media format changed event data.

GenericData ptr

Pointer to storage to user event data, if it’s outside this struct.

12.4. call.hpp 207

PJSUA2 Documentation, Release 1.0-alpha

union pj::MediaEvent::@1 data

Additional data/parameters about the event.

The type of data will be specific to the event type being reported.

void * pjMediaEvent

Pointer to original pjmedia_event.

Only valid when the struct is converted from PJSIP’s pjmedia_event.

class MediaTransportInfo

This structure describes media transport informations.

It corresponds to the pjmedia_transport_info structure.

Public Functions

void fromPj(const pjmedia_transport_info & info)

Convert from pjsip.

Public Members

SocketAddress srcRtpName

Remote address where RTP originated from.

SocketAddress srcRtcpName

Remote address where RTCP originated from.

class CallSetting

Call settings.

Public Functions

CallSetting(pj_bool_t useDefaultValues = false)

Default constructor initializes with empty or default values.

bool isEmpty()

Check if the settings are set with empty values.

Return

True if the settings are empty.

void fromPj(const pjsua_call_setting & prm)

Convert from pjsip.

pjsua_call_setting toPj()

Convert to pjsip.

Public Members

208 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

unsigned flag

Bitmask of pjsua_call_flag constants.

Default: PJSUA_CALL_INCLUDE_DISABLED_MEDIA

unsigned reqKeyframeMethod

This flag controls what methods to request keyframe are allowed on the call.

Value is bitmask of pjsua_vid_req_keyframe_method.

Default: PJSUA_VID_REQ_KEYFRAME_SIP_INFO | PJ-
SUA_VID_REQ_KEYFRAME_RTCP_PLI

unsigned audioCount

Number of simultaneous active audio streams for this call.

Setting this to zero will disable audio in this call.

Default: 1

unsigned videoCount

Number of simultaneous active video streams for this call.

Setting this to zero will disable video in this call.

Default: 1 (if video feature is enabled, otherwise it is zero)

class CallMediaInfo

Call media information.

Public Functions

CallMediaInfo()

Default constructor.

void fromPj(const pjsua_call_media_info & prm)

Convert from pjsip.

Public Members

unsigned index

Media index in SDP.

pjmedia_type type

Media type.

pjmedia_dir dir

Media direction.

pjsua_call_media_status status

Call media status.

int audioConfSlot

The conference port number for the call.

Only valid if the media type is audio.

12.4. call.hpp 209

PJSUA2 Documentation, Release 1.0-alpha

pjsua_vid_win_id videoIncomingWindowId

The window id for incoming video, if any, or PJSUA_INVALID_ID.

Only valid if the media type is video.

pjmedia_vid_dev_index videoCapDev

The video capture device for outgoing transmission, if any, or PJME-
DIA_VID_INVALID_DEV.

Only valid if the media type is video.

class CallInfo

Call information.

Application can query the call information by calling Call::getInfo().

Public Functions

void fromPj(const pjsua_call_info & pci)

Convert from pjsip.

Public Members

pjsua_call_id id

Call identification.

pjsip_role_e role

Initial call role (UAC == caller)

pjsua_acc_id accId

The account ID where this call belongs.

string localUri

Local URI.

string localContact

Local Contact.

string remoteUri

Remote URI.

string remoteContact

Remote contact.

string callIdString

Dialog Call-ID string.

CallSetting setting

Call setting.

pjsip_inv_state state

Call state.

string stateText

Text describing the state.

210 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

pjsip_status_code lastStatusCode

Last status code heard, which can be used as cause code.

string lastReason

The reason phrase describing the last status.

CallMediaInfoVector media

Array of active media information.

CallMediaInfoVector provMedia

Array of provisional media information.

This contains the media info in the provisioning state, that is when the media
session is being created/updated (SDP offer/answer is on progress).

TimeVal connectDuration

Up-to-date call connected duration (zero when call is not established)

TimeVal totalDuration

Total call duration, including set-up time.

bool remOfferer

Flag if remote was SDP offerer.

unsigned remAudioCount

Number of audio streams offered by remote.

unsigned remVideoCount

Number of video streams offered by remote.

class StreamInfo

Media stream info.

Public Functions

void fromPj(const pjsua_stream_info & info)

Convert from pjsip.

Public Members

pjmedia_type type

Media type of this stream.

pjmedia_tp_proto proto

Transport protocol (RTP/AVP, etc.)

pjmedia_dir dir

Media direction.

SocketAddress remoteRtpAddress

Remote RTP address.

SocketAddress remoteRtcpAddress

Optional remote RTCP address.

12.4. call.hpp 211

PJSUA2 Documentation, Release 1.0-alpha

unsigned txPt

Outgoing codec payload type.

unsigned rxPt

Incoming codec payload type.

string codecName

Codec name.

unsigned codecClockRate

Codec clock rate.

CodecParam codecParam

Optional codec param.

class StreamStat

Media stream statistic.

Public Functions

void fromPj(const pjsua_stream_stat & prm)

Convert from pjsip.

Public Members

RtcpStat rtcp

RTCP statistic.

JbufState jbuf

Jitter buffer statistic.

class OnCallStateParam

This structure contains parameters for Call::onCallState() callback.

Public Members

SipEvent e

Event which causes the call state to change.

class OnCallTsxStateParam

This structure contains parameters for Call::onCallTsxState() callback.

Public Members

SipEvent e

Transaction event that caused the state change.

class OnCallMediaStateParam

This structure contains parameters for Call::onCallMediaState() callback.

class OnCallSdpCreatedParam

This structure contains parameters for Call::onCallSdpCreated() callback.

Public Members

SdpSession sdp

212 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

The SDP has just been created.

SdpSession remSdp

The remote SDP, will be empty if local is SDP offerer.

class OnStreamCreatedParam

This structure contains parameters for Call::onStreamCreated() callback.

Public Members

MediaStream stream

Media stream.

unsigned streamIdx

Stream index in the media session.

MediaPort pPort

On input, it specifies the media port of the stream.

Application may modify this pointer to point to different media port to be
registered to the conference bridge.

class OnStreamDestroyedParam

This structure contains parameters for Call::onStreamDestroyed() callback.

Public Members

MediaStream stream

Media stream.

unsigned streamIdx

Stream index in the media session.

class OnDtmfDigitParam

This structure contains parameters for Call::onDtmfDigit() callback.

Public Members

string digit

DTMF ASCII digit.

class OnCallTransferRequestParam

This structure contains parameters for Call::onCallTransferRequest() callback.

Public Members

string dstUri

The destination where the call will be transferred to.

pjsip_status_code statusCode

Status code to be returned for the call transfer request.

On input, it contains status code 200.

CallSetting opt

The current call setting, application can update this setting for the call being
transferred.

12.4. call.hpp 213

PJSUA2 Documentation, Release 1.0-alpha

class OnCallTransferStatusParam

This structure contains parameters for Call::onCallTransferStatus() callback.

Public Members

pjsip_status_code statusCode

Status progress of the transfer request.

string reason

Status progress reason.

bool finalNotify

If true, no further notification will be reported.

The statusCode specified in this callback is the final status.

bool cont

Initially will be set to true, application can set this to false if it no longer
wants to receive further notification (for example, after it hangs up the call).

class OnCallReplaceRequestParam

This structure contains parameters for Call::onCallReplaceRequest() callback.

Public Members

SipRxData rdata

The incoming INVITE request to replace the call.

pjsip_status_code statusCode

Status code to be set by application.

Application should only return a final status (200-699)

string reason

Optional status text to be set by application.

CallSetting opt

The current call setting, application can update this setting for the call being
replaced.

class OnCallReplacedParam

This structure contains parameters for Call::onCallReplaced() callback.

Public Members

pjsua_call_id newCallId

The new call id.

class OnCallRxOfferParam

This structure contains parameters for Call::onCallRxOffer() callback.

Public Members

SdpSession offer

The new offer received.

pjsip_status_code statusCode

214 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Status code to be returned for answering the offer.

On input, it contains status code 200. Currently, valid values are only 200
and 488.

CallSetting opt

The current call setting, application can update this setting for answering the
offer.

class OnCallRedirectedParam

This structure contains parameters for Call::onCallRedirected() callback.

Public Members

string targetUri

The current target to be tried.

SipEvent e

The event that caused this callback to be called.

This could be the receipt of 3xx response, or 4xx/5xx response re-
ceived for the INVITE sent to subsequent targets, or empty (e.type
== PJSIP_EVENT_UNKNOWN) if this callback is called from within
Call::processRedirect() context.

class OnCallMediaEventParam

This structure contains parameters for Call::onCallMediaEvent() callback.

Public Members

unsigned medIdx

The media stream index.

MediaEvent ev

The media event.

class OnCallMediaTransportStateParam

This structure contains parameters for Call::onCallMediaTransportState() callback.

Public Members

unsigned medIdx

The media index.

pjsua_med_tp_st state

The media transport state.

pj_status_t status

The last error code related to the media transport state.

int sipErrorCode

Optional SIP error code.

class OnCreateMediaTransportParam

This structure contains parameters for Call::onCreateMediaTransport() callback.

Public Members

12.4. call.hpp 215

PJSUA2 Documentation, Release 1.0-alpha

unsigned mediaIdx

The media index in the SDP for which this media transport will be used.

MediaTransport mediaTp

The media transport which otherwise will be used by the call has this call-
back not been implemented.

Application can change this to its own instance of media transport to be used
by the call.

unsigned flags

Bitmask from pjsua_create_media_transport_flag.

class CallOpParam

This structure contains parameters for Call::answer(), Call::hangup(), Call::reinvite(),
Call::update(), Call::xfer(), Call::xferReplaces(), Call::setHold().

Public Functions

CallOpParam(bool useDefaultCallSetting = false)

Default constructor initializes with zero/empty values.

Setting useDefaultCallSetting to true will initialize opt with default call set-
ting values.

Public Members

CallSetting opt

The call setting.

pjsip_status_code statusCode

Status code.

string reason

Reason phrase.

unsigned options

Options.

SipTxOption txOption

List of headers etc to be added to outgoing response message.

Note that this message data will be persistent in all next answers/responses
for this INVITE request.

class CallSendRequestParam

This structure contains parameters for Call::sendRequest()

Public Functions

CallSendRequestParam()

Default constructor initializes with zero/empty values.

Public Members

string method

SIP method of the request.

216 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

SipTxOption txOption

Message body and/or list of headers etc to be included in outgoing request.

class CallVidSetStreamParam

This structure contains parameters for Call::vidSetStream()

Public Functions

CallVidSetStreamParam()

Default constructor.

Public Members

int medIdx

Specify the media stream index.

This can be set to -1 to denote the default video stream in the call, which is
the first active video stream or any first video stream if none is active.

This field is valid for all video stream operations, except PJ-
SUA_CALL_VID_STRM_ADD.

Default: -1 (first active video stream, or any first video stream if none is
active)

pjmedia_dir dir

Specify the media stream direction.

This field is valid for the following video stream op-
erations: PJSUA_CALL_VID_STRM_ADD and PJ-
SUA_CALL_VID_STRM_CHANGE_DIR.

Default: PJMEDIA_DIR_ENCODING_DECODING

pjmedia_vid_dev_index capDev

Specify the video capture device ID.

This can be set to PJMEDIA_VID_DEFAULT_CAPTURE_DEV to specify
the default capture device as configured in the account.

This field is valid for the following video stream op-
erations: PJSUA_CALL_VID_STRM_ADD and PJ-
SUA_CALL_VID_STRM_CHANGE_CAP_DEV.

Default: PJMEDIA_VID_DEFAULT_CAPTURE_DEV.

class Call

Call.

Public Functions

Call(Account & acc, int call_id = PJSUA_INVALID_ID)

Constructor.

~Call()

Destructor.

12.4. call.hpp 217

PJSUA2 Documentation, Release 1.0-alpha

CallInfo getInfo()

Obtain detail information about this call.

Return

Call info.

bool isActive()

Check if this call has active INVITE session and the INVITE session has not
been disconnected.

Return

True if call is active.

int getId()

Get PJSUA-LIB call ID or index associated with this call.

Return

Integer greater than or equal to zero.

bool hasMedia()

Check if call has an active media session.

Return

True if yes.

Media * getMedia(unsigned med_idx)

Get media for the specified media index.

Return

The media or NULL if invalid or inactive.

Parameters

• med_idx - Media index.

pjsip_dialog_cap_status remoteHasCap(int htype, const string & hname, const
string & token)

Check if remote peer support the specified capability.

218 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Return

PJSIP_DIALOG_CAP_SUPPORTED if the specified capability is explic-
itly supported, see pjsip_dialog_cap_status for more info.

Parameters

• htype - The header type (pjsip_hdr_e) to be checked, which value may
be:

• hname - If htype specifies PJSIP_H_OTHER, then the header name
must be supplied in this argument. Otherwise the value must be set to
empty string (“”).

• token - The capability token to check. For example, if htype is
PJSIP_H_ALLOW, then token specifies the method names; if htype is
PJSIP_H_SUPPORTED, then token specifies the extension names such
as “100rel”.

void setUserData(Token user_data)

Attach application specific data to the call.

Application can then inspect this data by calling getUserData().

Parameters

• user_data - Arbitrary data to be attached to the call.

Token getUserData()

Get user data attached to the call, which has been previously set with se-
tUserData().

Return

The user data.

pj_stun_nat_type getRemNatType()

Get the NAT type of remote’s endpoint.

This is a proprietary feature of PJSUA-LIB which sends its NAT type in the
SDP when natTypeInSdp is set in UaConfig.

This function can only be called after SDP has been received from remote,
which means for incoming call, this function can be called as soon as call
is received as long as incoming call contains SDP, and for outgoing call,
this function can be called only after SDP is received (normally in 200/OK
response to INVITE). As a general case, application should call this function
after or in onCallMediaState() callback.

Return

The NAT type.

12.4. call.hpp 219

PJSUA2 Documentation, Release 1.0-alpha

See

Endpoint::natGetType(), natTypeInSdp

void makeCall(const string & dst_uri, const CallOpParam & prm)

Make outgoing call to the specified URI.

Parameters

• dst_uri - URI to be put in the To header (normally is the same as the
target URI).

• prm.opt - Optional call setting.

• prm.txOption - Optional headers etc to be added to outgoing IN-
VITE request.

void answer(const CallOpParam & prm)

Send response to incoming INVITE request with call setting param.

Depending on the status code specified as parameter, this function may send
provisional response, establish the call, or terminate the call. Notes about
call setting:

Parameters

• prm.opt - Optional call setting.

• prm.statusCode - Status code, (100-699).

• prm.reason - Optional reason phrase. If empty, default text will be
used.

• prm.txOption - Optional list of headers etc to be added to outgoing
response message. Note that this message data will be persistent in all
next answers/responses for this INVITE request.

void hangup(const CallOpParam & prm)

Hangup call by using method that is appropriate according to the call state.

This function is different than answering the call with 3xx-6xx response
(with answer()), in that this function will hangup the call regardless of the
state and role of the call, while answer() only works with incoming calls on
EARLY state.

Parameters

• prm.statusCode - Optional status code to be sent when we’re re-
jecting incoming call. If the value is zero, “603/Decline” will be sent.

• prm.reason - Optional reason phrase to be sent when we’re rejecting
incoming call. If empty, default text will be used.

220 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

• prm.txOption - Optional list of headers etc to be added to outgoing
request/response message.

void setHold(const CallOpParam & prm)

Put the specified call on hold.

This will send re-INVITE with the appropriate SDP to inform remote that
the call is being put on hold. The final status of the request itself will be
reported on the onCallMediaState() callback, which inform the application
that the media state of the call has changed.

Parameters

• prm.options - Bitmask of pjsua_call_flag constants. Currently, only
the flag PJSUA_CALL_UPDATE_CONTACT can be used.

• prm.txOption - Optional message components to be sent with the
request.

void reinvite(const CallOpParam & prm)

Send re-INVITE to release hold.

The final status of the request itself will be reported on the onCallMediaS-
tate() callback, which inform the application that the media state of the call
has changed.

Parameters

• prm.opt - Optional call setting, if empty, the current call setting will
remain unchanged.

• prm.txOption - Optional message components to be sent with the
request.

void update(const CallOpParam & prm)

Send UPDATE request.

Parameters

• prm.opt - Optional call setting, if empty, the current call setting will
remain unchanged.

• prm.txOption - Optional message components to be sent with the
request.

void xfer(const string & dest, const CallOpParam & prm)

Initiate call transfer to the specified address.

This function will send REFER request to instruct remote call party to initiate
a new INVITE session to the specified destination/target.

12.4. call.hpp 221

PJSUA2 Documentation, Release 1.0-alpha

If application is interested to monitor the successfulness and the progress of
the transfer request, it can implement onCallTransferStatus() callback which
will report the progress of the call transfer request.

Parameters

• dest - URI of new target to be contacted. The URI may be in name
address or addr-spec format.

• prm.txOption - Optional message components to be sent with the
request.

void xferReplaces(const Call & dest_call, const CallOpParam & prm)

Initiate attended call transfer.

This function will send REFER request to instruct remote call party to initiate
new INVITE session to the URL of destCall. The party at dest_call then
should “replace” the call with us with the new call from the REFER recipient.

Parameters

• dest_call - The call to be replaced.

• prm.options - Application may specify PJ-
SUA_XFER_NO_REQUIRE_REPLACES to suppress the inclusion
of “Require: replaces” in the outgoing INVITE request created by the
REFER request.

• prm.txOption - Optional message components to be sent with the
request.

void processRedirect(pjsip_redirect_op cmd)

Accept or reject redirection response.

Application MUST call this function after it signaled
PJSIP_REDIRECT_PENDING in the onCallRedirected() callback, to
notify the call whether to accept or reject the redirection to the current target.
Application can use the combination of PJSIP_REDIRECT_PENDING
command in onCallRedirected() callback and this function to ask for user
permission before redirecting the call.

Note that if the application chooses to reject or stop redirection (by using
PJSIP_REDIRECT_REJECT or PJSIP_REDIRECT_STOP respectively),
the call disconnection callback will be called before this function returns.
And if the application rejects the target, the onCallRedirected() callback may
also be called before this function returns if there is another target to try.

Parameters

• cmd - Redirection operation to be applied to the current target. The se-
mantic of this argument is similar to the description in the onCallRedi-
rected() callback, except that the PJSIP_REDIRECT_PENDING is not
accepted here.

222 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

void dialDtmf(const string & digits)

Send DTMF digits to remote using RFC 2833 payload formats.

Parameters

• digits - DTMF string digits to be sent.

void sendInstantMessage(const SendInstantMessageParam & prm)

Send instant messaging inside INVITE session.

Parameters

• prm.contentType - MIME type.

• prm.content - The message content.

• prm.txOption - Optional list of headers etc to be included in outgo-
ing request. The body descriptor in the txOption is ignored.

• prm.userData - Optional user data, which will be given back when
the IM callback is called.

void sendTypingIndication(const SendTypingIndicationParam & prm)

Send IM typing indication inside INVITE session.

Parameters

• prm.isTyping - True to indicate to remote that local person is cur-
rently typing an IM.

• prm.txOption - Optional list of headers etc to be included in outgo-
ing request.

void sendRequest(const CallSendRequestParam & prm)

Send arbitrary request with the call.

This is useful for example to send INFO request. Note that application
should not use this function to send requests which would change the invite
session’s state, such as re-INVITE, UPDATE, PRACK, and BYE.

Parameters

• prm.method - SIP method of the request.

• prm.txOption - Optional message body and/or list of headers to be
included in outgoing request.

string dump(bool with_media, const string indent)

Dump call and media statistics to string.

12.4. call.hpp 223

PJSUA2 Documentation, Release 1.0-alpha

Return

Call dump and media statistics string.

Parameters

• with_media - True to include media information too.

• indent - Spaces for left indentation.

int vidGetStreamIdx()

Get the media stream index of the default video stream in the call.

Typically this will just retrieve the stream index of the first activated video
stream in the call. If none is active, it will return the first inactive video
stream.

Return

The media stream index or -1 if no video stream is present in the call.

bool vidStreamIsRunning(int med_idx, pjmedia_dir dir)

Determine if video stream for the specified call is currently running (i.e.

has been created, started, and not being paused) for the specified direction.

Return

True if stream is currently running for the specified direction.

Parameters

• med_idx - Media stream index, or -1 to specify default video media.

• dir - The direction to be checked.

void vidSetStream(pjsua_call_vid_strm_op op, const CallVidSetStreamParam &
param)

Add, remove, modify, and/or manipulate video media stream for the speci-
fied call.

This may trigger a re-INVITE or UPDATE to be sent for the call.

Parameters

• op - The video stream operation to be performed, possible values are
pjsua_call_vid_strm_op.

• param - The parameters for the video stream operation (see CallVid-
SetStreamParam).

StreamInfo getStreamInfo(unsigned med_idx)

224 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Get media stream info for the specified media index.

Return

The stream info.

Parameters

• med_idx - Media stream index.

StreamStat getStreamStat(unsigned med_idx)

Get media stream statistic for the specified media index.

Return

The stream statistic.

Parameters

• med_idx - Media stream index.

MediaTransportInfo getMedTransportInfo(unsigned med_idx)

Get media transport info for the specified media index.

Return

The transport info.

Parameters

• med_idx - Media stream index.

void processMediaUpdate(OnCallMediaStateParam & prm)

Internal function (callled by Endpoint(to process update to call medias when
call media state changes.

void processStateChange(OnCallStateParam & prm)

Internal function (called by Endpoint) to process call state change.

void onCallState(OnCallStateParam & prm)

Notify application when call state has changed.

Application may then query the call info to get the detail call states by calling
getInfo() function.

Parameters

• prm - Callback parameter.

12.4. call.hpp 225

PJSUA2 Documentation, Release 1.0-alpha

void onCallTsxState(OnCallTsxStateParam & prm)

This is a general notification callback which is called whenever a transaction
within the call has changed state.

Application can implement this callback for example to monitor the state of
outgoing requests, or to answer unhandled incoming requests (such as INFO)
with a final response.

Parameters

• prm - Callback parameter.

void onCallMediaState(OnCallMediaStateParam & prm)

Notify application when media state in the call has changed.

Normal application would need to implement this callback, e.g. to connect
the call’s media to sound device. When ICE is used, this callback will also
be called to report ICE negotiation failure.

Parameters

• prm - Callback parameter.

void onCallSdpCreated(OnCallSdpCreatedParam & prm)

Notify application when a call has just created a local SDP (for initial or
subsequent SDP offer/answer).

Application can implement this callback to modify the SDP, before it is be-
ing sent and/or negotiated with remote SDP, for example to apply per ac-
count/call basis codecs priority or to add custom/proprietary SDP attributes.

Parameters

• prm - Callback parameter.

void onStreamCreated(OnStreamCreatedParam & prm)

Notify application when media session is created and before it is registered
to the conference bridge.

Application may return different media port if it has added media processing
port to the stream. This media port then will be added to the conference
bridge instead.

Parameters

• prm - Callback parameter.

void onStreamDestroyed(OnStreamDestroyedParam & prm)

226 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Notify application when media session has been unregistered from the con-
ference bridge and about to be destroyed.

Parameters

• prm - Callback parameter.

void onDtmfDigit(OnDtmfDigitParam & prm)

Notify application upon incoming DTMF digits.

Parameters

• prm - Callback parameter.

void onCallTransferRequest(OnCallTransferRequestParam & prm)

Notify application on call being transferred (i.e.

REFER is received). Application can decide to accept/reject transfer request
by setting the code (default is 202). When this callback is not implemented,
the default behavior is to accept the transfer.

Parameters

• prm - Callback parameter.

void onCallTransferStatus(OnCallTransferStatusParam & prm)

Notify application of the status of previously sent call transfer request.

Application can monitor the status of the call transfer request, for example
to decide whether to terminate existing call.

Parameters

• prm - Callback parameter.

void onCallReplaceRequest(OnCallReplaceRequestParam & prm)

Notify application about incoming INVITE with Replaces header.

Application may reject the request by setting non-2xx code.

Parameters

• prm - Callback parameter.

void onCallReplaced(OnCallReplacedParam & prm)

Notify application that an existing call has been replaced with a new call.

12.4. call.hpp 227

PJSUA2 Documentation, Release 1.0-alpha

This happens when PJSUA-API receives incoming INVITE request with Re-
places header.

After this callback is called, normally PJSUA-API will disconnect this call
and establish a new call newCallId.

Parameters

• prm - Callback parameter.

void onCallRxOffer(OnCallRxOfferParam & prm)

Notify application when call has received new offer from remote (i.e.

re-INVITE/UPDATE with SDP is received). Application can decide to ac-
cept/reject the offer by setting the code (default is 200). If the offer is ac-
cepted, application can update the call setting to be applied in the answer.
When this callback is not implemented, the default behavior is to accept the
offer using current call setting.

Parameters

• prm - Callback parameter.

void onInstantMessage(OnInstantMessageParam & prm)

Notify application on incoming MESSAGE request.

Parameters

• prm - Callback parameter.

void onInstantMessageStatus(OnInstantMessageStatusParam & prm)

Notify application about the delivery status of outgoing MESSAGE request.

Parameters

• prm - Callback parameter.

void onTypingIndication(OnTypingIndicationParam & prm)

Notify application about typing indication.

Parameters

• prm - Callback parameter.

pjsip_redirect_op onCallRedirected(OnCallRedirectedParam & prm)

This callback is called when the call is about to resend the INVITE request to
the specified target, following the previously received redirection response.

228 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Application may accept the redirection to the specified target, reject this tar-
get only and make the session continue to try the next target in the list if such
target exists, stop the whole redirection process altogether and cause the ses-
sion to be disconnected, or defer the decision to ask for user confirmation.

This callback is optional, the default behavior is to NOT follow the redirec-
tion response.

Return

Action to be performed for the target. Set this parameter to one of the
value below:

Parameters

• prm - Callback parameter.

void onCallMediaTransportState(OnCallMediaTransportStateParam & prm)

This callback is called when media transport state is changed.

Parameters

• prm - Callback parameter.

void onCallMediaEvent(OnCallMediaEventParam & prm)

Notification about media events such as video notifications.

This callback will most likely be called from media threads, thus application
must not perform heavy processing in this callback. Especially, application
must not destroy the call or media in this callback. If application needs to
perform more complex tasks to handle the event, it should post the task to
another thread.

Parameters

• prm - Callback parameter.

void onCreateMediaTransport(OnCreateMediaTransportParam & prm)

This callback can be used by application to implement custom media trans-
port adapter for the call, or to replace the media transport with something
completely new altogether.

This callback is called when a new call is created. The library has created
a media transport for the call, and it is provided as the mediaTp argument
of this callback. The callback may change it with the instance of media
transport to be used by the call.

Parameters

• prm - Callback parameter.

Public Static Functions

Call * lookup(int call_id)

12.4. call.hpp 229

PJSUA2 Documentation, Release 1.0-alpha

Get the Call class for the specified call Id.

Return

The Call instance or NULL if not found.

Parameters

• call_id - The call ID to lookup

Private Members

Account & acc

pjsua_call_id id

Token userData

std::vector< Media * > medias

12.5 presence.hpp

PJSUA2 Presence Operations.

namespace pj

PJSUA2 API is inside pj namespace.

Typedefs

typedef std::vector< Buddy * > BuddyVector

Array of buddies.

class PresenceStatus

This describes presence status.

Public Functions

PresenceStatus()

Constructor.

Public Members

pjsua_buddy_status status

Buddy‘s online status.

string statusText

Text to describe buddy’s online status.

pjrpid_activity activity

Activity type.

string note

230 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Optional text describing the person/element.

string rpidId

Optional RPID ID string.

class BuddyConfig

This structure describes buddy configuration when adding a buddy to the buddy list with
Buddy::create().

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

string uri

Buddy URL or name address.

bool subscribe

Specify whether presence subscription should start immediately.

class BuddyInfo

This structure describes buddy info, which can be retrieved by via Buddy::getInfo().

Public Functions

void fromPj(const pjsua_buddy_info & pbi)

Import from pjsip structure.

Public Members

string uri

The full URI of the buddy, as specified in the configuration.

string contact

Buddy‘s Contact, only available when presence subscription has been estab-
lished to the buddy.

bool presMonitorEnabled

Flag to indicate that we should monitor the presence information for this
buddy (normally yes, unless explicitly disabled).

pjsip_evsub_state subState

12.5. presence.hpp 231

PJSUA2 Documentation, Release 1.0-alpha

If presMonitorEnabled is true, this specifies the last state of the presence
subscription.

If presence subscription session is currently active, the value will be
PJSIP_EVSUB_STATE_ACTIVE. If presence subscription request has been
rejected, the value will be PJSIP_EVSUB_STATE_TERMINATED, and the
termination reason will be specified in subTermReason.

string subStateName

String representation of subscription state.

pjsip_status_code subTermCode

Specifies the last presence subscription termination code.

This would return the last status of the SUBSCRIBE request. If the sub-
scription is terminated with NOTIFY by the server, this value will be set to
200, and subscription termination reason will be given in the subTermReason
field.

string subTermReason

Specifies the last presence subscription termination reason.

If presence subscription is currently active, the value will be empty.

PresenceStatus presStatus

Presence status.

class Buddy

Buddy.

Public Functions

Buddy()

Constructor.

~Buddy()

Destructor.

Note that if the Buddy instance is deleted, it will also delete the correspond-
ing buddy in the PJSUA-LIB.

void create(Account & acc, const BuddyConfig & cfg)

Create buddy and register the buddy to PJSUA-LIB.

Parameters

• acc - The account for this buddy.

• cfg - The buddy config.

bool isValid()

232 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Check if this buddy is valid.

Return

True if it is.

BuddyInfo getInfo()

Get detailed buddy info.

Return

Buddy info.

void subscribePresence(bool subscribe)

Enable/disable buddy’s presence monitoring.

Once buddy’s presence is subscribed, application will be informed about
buddy’s presence status changed via onBuddyState() callback.

Parameters

• subscribe - Specify true to activate presence subscription.

void updatePresence(void)

Update the presence information for the buddy.

Although the library periodically refreshes the presence subscription for all
buddies, some application may want to refresh the buddy’s presence sub-
scription immediately, and in this case it can use this function to accomplish
this.

Note that the buddy’s presence subscription will only be initiated if presence
monitoring is enabled for the buddy. See subscribePresence() for more info.
Also if presence subscription for the buddy is already active, this function
will not do anything.

Once the presence subscription is activated successfully for the buddy, appli-
cation will be notified about the buddy’s presence status in the onBuddyS-
tate() callback.

void sendInstantMessage(const SendInstantMessageParam & prm)

Send instant messaging outside dialog, using this buddy’s specified account
for route set and authentication.

Parameters

• prm - Sending instant message parameter.

void sendTypingIndication(const SendTypingIndicationParam & prm)

12.5. presence.hpp 233

PJSUA2 Documentation, Release 1.0-alpha

Send typing indication outside dialog.

Parameters

• prm - Sending instant message parameter.

void onBuddyState()

Notify application when the buddy state has changed.

Application may then query the buddy info to get the details.

Private Members

pjsua_buddy_id id

Buddy ID.

Account * acc

Account.

12.6 persistent.hpp

PJSUA2 Persistent Services.

namespace pj

PJSUA2 API is inside pj namespace.

class PersistentObject

This is the abstract base class of objects that can be serialized to/from persistent document.

Public Functions

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

class PersistentDocument

This a the abstract base class for a persistent document.

A document is created either by loading from a string or a file, or by constructing it manually
when writing data to it. The document then can be saved to either string or to a file. A document
contains one root ContainerNode where all data are stored under.

234 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Document is read and written serially, hence the order of reading must be the same as the order
of writing. The PersistentDocument class provides API to read and write to the root node, but
for more flexible operations application can use the ContainerNode methods instead. Indeed
the read and write API in PersistentDocument is just a shorthand which calls the relevant
methods in the ContainerNode. As a tip, normally application only uses the readObject() and
writeObject() methods declared here to read/write top level objects, and use the macros that
are explained in ContainerNode documentation to read/write more detailed data.

Public Functions

~PersistentDocument()

Virtual destructor.

void loadFile(const string & filename)

Load this document from a file.

Parameters

• filename - The file name.

void loadString(const string & input)

Load this document from string.

Parameters

• input - The string.

void saveFile(const string & filename)

Write this document to a file.

Parameters

• filename - The file name.

string saveString()

Write this document to string.

Return

The string document.

ContainerNode & getRootContainer()

Get the root container node for this document.

Return

The root node.

12.6. persistent.hpp 235

PJSUA2 Documentation, Release 1.0-alpha

bool hasUnread()

Determine if there is unread element.

If yes, then app can use one of the readXxx() functions to read it.

Return

True if there is.

string unreadName()

Get the name of the next unread element.

It will throw Error if there is no more element to read.

Return

The name of the next element .

int readInt(const string & name = “”)

Read an integer value from the document and return the value.

This will throw Error if the current element is not a number. The read posi-
tion will be advanced to the next element.

Return

The value.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

float readNumber(const string & name = “”)

Read a float value from the document and return the value.

This will throw Error if the current element is not a number. The read posi-
tion will be advanced to the next element.

Return

The value.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

bool readBool(const string & name = “”)

236 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Read a boolean value from the container and return the value.

This will throw Error if the current element is not a boolean. The read posi-
tion will be advanced to the next element.

Return

The value.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

string readString(const string & name = “”)

Read a string value from the container and return the value.

This will throw Error if the current element is not a string. The read position
will be advanced to the next element.

Return

The value.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

StringVector readStringVector(const string & name = “”)

Read a string array from the container.

This will throw Error if the current element is not a string array. The read
position will be advanced to the next element.

Return

The value.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

void readObject(PersistentObject & obj)

Read the specified object from the container.

This is equal to calling PersistentObject.readObject(ContainerNode);

Parameters

• obj - The object to read.

ContainerNode readContainer(const string & name = “”)

12.6. persistent.hpp 237

PJSUA2 Documentation, Release 1.0-alpha

Read a container from the container.

This will throw Error if the current element is not an object. The read posi-
tion will be advanced to the next element.

Return

Container object.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

ContainerNode readArray(const string & name = “”)

Read array container from the container.

This will throw Error if the current element is not an array. The read position
will be advanced to the next element.

Return

Container object.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

void writeNumber(const string & name, float num)

Write a number value to the container.

Parameters

• name - The name for the value in the container.

• num - The value to be written.

void writeInt(const string & name, int num)

Write a number value to the container.

Parameters

• name - The name for the value in the container.

• num - The value to be written.

void writeBool(const string & name, bool value)

Write a boolean value to the container.

Parameters

• name - The name for the value in the container.

238 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

• value - The value to be written.

void writeString(const string & name, const string & value)

Write a string value to the container.

Parameters

• name - The name for the value in the container.

• value - The value to be written.

void writeStringVector(const string & name, const StringVector & arr)

Write string vector to the container.

Parameters

• name - The name for the value in the container.

• arr - The vector to be written.

void writeObject(const PersistentObject & obj)

Write an object to the container.

This is equal to calling PersistentObject.writeObject(ContainerNode);

Parameters

• obj - The object to be written

ContainerNode writeNewContainer(const string & name)

Create and write an empty Object node that can be used as parent for subse-
quent write operations.

Return

A sub-container.

Parameters

• name - The name for the new container in the container.

ContainerNode writeNewArray(const string & name)

Create and write an empty array node that can be used as parent for subse-
quent write operations.

Return

A sub-container.

12.6. persistent.hpp 239

PJSUA2 Documentation, Release 1.0-alpha

Parameters

• name - The name for the array.

class container_node_internal_data

Internal data for ContainerNode.

See ContainerNode implementation notes for more info.

Public Members

void * doc

The document.

void * data1

Internal data 1.

void * data2

Internal data 2.

class ContainerNode

A container node is a placeholder for storing other data elements, which could be boolean,
number, string, array of strings, or another container.

Each data in the container is basically a name/value pair, with a type internally associated with
it so that written data can be read in the correct type. Data is read and written serially, hence
the order of reading must be the same as the order of writing.

Application can read data from it by using the various read methods, and write data to it using
the various write methods. Alternatively, it may be more convenient to use the provided macros
below to read and write the data, because these macros set the name automatically:

Implementation notes:

The ContainerNode class is subclass-able, but not in the usual C++ way. With the usual C++
inheritance, some methods will be made pure virtual and must be implemented by the actual
class. However, doing so will require dynamic instantiation of the ContainerNode class, which
means we will need to pass around the class as pointer, for example as the return value of
readContainer() and writeNewContainer() methods. Then we will need to establish who needs
or how to delete these objects, or use shared pointer mechanism, each of which is considered
too inconvenient or complicated for the purpose.

So hence we use C style “inheritance”, where the methods are declared in container_node_op
and the data in container_node_internal_data structures. An implementation of ContainerN-
ode class will need to set up these members with values that makes sense to itself. The methods
in container_node_op contains the pointer to the actual implementation of the operation, which
would be specific according to the format of the document. The methods in this ContainerNode
class are just thin wrappers which call the implementation in the container_node_op structure.

Public Functions

bool hasUnread()

Determine if there is unread element.

If yes, then app can use one of the readXxx() functions to read it.

string unreadName()

240 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Get the name of the next unread element.

int readInt(const string & name = “”)

Read an integer value from the document and return the value.

This will throw Error if the current element is not a number. The read posi-
tion will be advanced to the next element.

Return

The value.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

float readNumber(const string & name = “”)

Read a number value from the document and return the value.

This will throw Error if the current element is not a number. The read posi-
tion will be advanced to the next element.

Return

The value.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

bool readBool(const string & name = “”)

Read a boolean value from the container and return the value.

This will throw Error if the current element is not a boolean. The read posi-
tion will be advanced to the next element.

Return

The value.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

string readString(const string & name = “”)

Read a string value from the container and return the value.

This will throw Error if the current element is not a string. The read position
will be advanced to the next element.

12.6. persistent.hpp 241

PJSUA2 Documentation, Release 1.0-alpha

Return

The value.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

StringVector readStringVector(const string & name = “”)

Read a string array from the container.

This will throw Error if the current element is not a string array. The read
position will be advanced to the next element.

Return

The value.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

void readObject(PersistentObject & obj)

Read the specified object from the container.

This is equal to calling PersistentObject.readObject(ContainerNode);

Parameters

• obj - The object to read.

ContainerNode readContainer(const string & name = “”)

Read a container from the container.

This will throw Error if the current element is not a container. The read
position will be advanced to the next element.

Return

Container object.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

ContainerNode readArray(const string & name = “”)

Read array container from the container.

242 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

This will throw Error if the current element is not an array. The read position
will be advanced to the next element.

Return

Container object.

Parameters

• name - If specified, then the function will check if the name of the next
element matches the specified name and throw Error if it doesn’t match.

void writeNumber(const string & name, float num)

Write a number value to the container.

Parameters

• name - The name for the value in the container.

• num - The value to be written.

void writeInt(const string & name, int num)

Write a number value to the container.

Parameters

• name - The name for the value in the container.

• num - The value to be written.

void writeBool(const string & name, bool value)

Write a boolean value to the container.

Parameters

• name - The name for the value in the container.

• value - The value to be written.

void writeString(const string & name, const string & value)

Write a string value to the container.

Parameters

• name - The name for the value in the container.

• value - The value to be written.

void writeStringVector(const string & name, const StringVector & arr)

12.6. persistent.hpp 243

PJSUA2 Documentation, Release 1.0-alpha

Write string vector to the container.

Parameters

• name - The name for the value in the container.

• arr - The vector to be written.

void writeObject(const PersistentObject & obj)

Write an object to the container.

This is equal to calling PersistentObject.writeObject(ContainerNode);

Parameters

• obj - The object to be written

ContainerNode writeNewContainer(const string & name)

Create and write an empty Object node that can be used as parent for subse-
quent write operations.

Return

A sub-container.

Parameters

• name - The name for the new container in the container.

ContainerNode writeNewArray(const string & name)

Create and write an empty array node that can be used as parent for subse-
quent write operations.

Return

A sub-container.

Parameters

• name - The name for the array.

Public Members

container_node_op * op

Method table.

container_node_internal_data data

Internal data.

12.7 json.hpp

namespace pj

244 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

PJSUA2 API is inside pj namespace.

class JsonDocument

Persistent document (file) with JSON format.

Public Functions

JsonDocument()

Default constructor.

~JsonDocument()

Destructor.

void loadFile(const string & filename)

Load this document from a file.

Parameters

• filename - The file name.

void loadString(const string & input)

Load this document from string.

Parameters

• input - The string.

void saveFile(const string & filename)

Write this document to a file.

Parameters

• filename - The file name.

string saveString()

Write this document to string.

ContainerNode & getRootContainer()

Get the root container node for this document.

pj_json_elem * allocElement()

12.7. json.hpp 245

PJSUA2 Documentation, Release 1.0-alpha

An internal function to create JSON element.

pj_pool_t * getPool()

An internal function to get the pool.

Private Functions

void initRoot()

Private Members

pj_caching_pool cp

ContainerNode rootNode

pj_json_elem * root

pj_pool_t * pool

12.8 siptypes.hpp

namespace pj

PJSUA2 API is inside pj namespace.

Typedefs

typedef std::vector< SipHeader > SipHeaderVector

Array of strings.

typedef std::vector< SipMultipartPart > SipMultipartPartVector

Array of multipart parts.

class AuthCredInfo

Credential information.

Credential contains information to authenticate against a service.

Public Functions

AuthCredInfo()

Default constructor.

AuthCredInfo(const string & scheme, const string & realm, const string &
user_name, const int data_type, const string data)

246 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Construct a credential with the specified parameters.

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

string scheme

The authentication scheme (e.g.

“digest”).

string realm

Realm on which this credential is to be used.

Use “*” to make a credential that can be used to authenticate against any
challenges.

string username

Authentication user name.

int dataType

Type of data that is contained in the “data” field.

Use 0 if the data contains plain text password.

string data

The data, which can be a plain text password or a hashed digest.

string akaK

Permanent subscriber key.

string akaOp

Operator variant key.

string akaAmf

Authentication Management Field.

class TlsConfig

TLS transport settings, to be specified in TransportConfig.

Public Functions

12.8. siptypes.hpp 247

PJSUA2 Documentation, Release 1.0-alpha

TlsConfig()

Default constructor initialises with default values.

pjsip_tls_setting toPj()

Convert to pjsip.

void fromPj(const pjsip_tls_setting & prm)

Convert from pjsip.

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

string CaListFile

Certificate of Authority (CA) list file.

string certFile

Public endpoint certificate file, which will be used as client- side certificate
for outgoing TLS connection, and server-side certificate for incoming TLS
connection.

string privKeyFile

Optional private key of the endpoint certificate to be used.

string password

Password to open private key.

pjsip_ssl_method method

TLS protocol method from pjsip_ssl_method.

Default is PJSIP_SSL_UNSPECIFIED_METHOD (0), which in turn
will use PJSIP_SSL_DEFAULT_METHOD, which default value is
PJSIP_TLSV1_METHOD.

IntVector ciphers

248 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Ciphers and order preference.

The Endpoint::utilSslGetAvailableCiphers() can be used to check the avail-
able ciphers supported by backend. If the array is empty, then default cipher
list of the backend will be used.

bool verifyServer

Specifies TLS transport behavior on the server TLS certificate verification
result:

In any cases, application can inspect pjsip_tls_state_info in the callback to
see the verification detail.

Default value is false.

bool verifyClient

Specifies TLS transport behavior on the client TLS certificate verification
result:

In any cases, application can inspect pjsip_tls_state_info in the callback to
see the verification detail.

Default value is PJ_FALSE.

bool requireClientCert

When acting as server (incoming TLS connections), reject incoming connec-
tion if client doesn’t supply a TLS certificate.

This setting corresponds to SSL_VERIFY_FAIL_IF_NO_PEER_CERT
flag. Default value is PJ_FALSE.

unsigned msecTimeout

TLS negotiation timeout to be applied for both outgoing and incoming con-
nection, in milliseconds.

If zero, the SSL negotiation doesn’t have a timeout.

Default: zero

pj_qos_type qosType

QoS traffic type to be set on this transport.

When application wants to apply QoS tagging to the transport, it’s preferable
to set this field rather than qosParam fields since this is more portable.

Default value is PJ_QOS_TYPE_BEST_EFFORT.

pj_qos_params qosParams

Set the low level QoS parameters to the transport.

This is a lower level operation than setting the qosType field and may not be
supported on all platforms.

By default all settings in this structure are disabled.

bool qosIgnoreError

Specify if the transport should ignore any errors when setting the QoS traffic
type/parameters.

Default: PJ_TRUE

12.8. siptypes.hpp 249

PJSUA2 Documentation, Release 1.0-alpha

class TransportConfig

Parameters to create a transport instance.

Public Functions

TransportConfig()

Default constructor initialises with default values.

void fromPj(const pjsua_transport_config & prm)

Convert from pjsip.

pjsua_transport_config toPj()

Convert to pjsip.

void readObject(const ContainerNode & node)

Read this object from a container node.

Parameters

• node - Container to read values from.

void writeObject(ContainerNode & node)

Write this object to a container node.

Parameters

• node - Container to write values to.

Public Members

unsigned port

UDP port number to bind locally.

This setting MUST be specified even when default port is desired. If the
value is zero, the transport will be bound to any available port, and applica-
tion can query the port by querying the transport info.

unsigned portRange

Specify the port range for socket binding, relative to the start port number
specified in port.

Note that this setting is only applicable when the start port number is non
zero.

Default value is zero.

string publicAddress

250 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Optional address to advertise as the address of this transport.

Application can specify any address or hostname for this field, for example
it can point to one of the interface address in the system, or it can point to the
public address of a NAT router where port mappings have been configured
for the application.

Note: this option can be used for both UDP and TCP as well!

string boundAddress

Optional address where the socket should be bound to.

This option SHOULD only be used to selectively bind the socket to particular
interface (instead of 0.0.0.0), and SHOULD NOT be used to set the published
address of a transport (the public_addr field should be used for that purpose).

Note that unlike public_addr field, the address (or hostname) here MUST
correspond to the actual interface address in the host, since this address will
be specified as bind() argument.

TlsConfig tlsConfig

This specifies TLS settings for TLS transport.

It is only be used when this transport config is being used to create a SIP
TLS transport.

pj_qos_type qosType

QoS traffic type to be set on this transport.

When application wants to apply QoS tagging to the transport, it’s preferable
to set this field rather than qosParam fields since this is more portable.

Default is QoS not set.

pj_qos_params qosParams

Set the low level QoS parameters to the transport.

This is a lower level operation than setting the qosType field and may not be
supported on all platforms.

Default is QoS not set.

class TransportInfo

This structure describes transport information returned by Endpoint::transportGetInfo() func-
tion.

Public Functions

void fromPj(const pjsua_transport_info & info)

Construct from pjsua_transport_info.

Public Members

TransportId id

PJSUA transport identification.

pjsip_transport_type_e type

Transport type.

string typeName

12.8. siptypes.hpp 251

PJSUA2 Documentation, Release 1.0-alpha

Transport type name.

string info

Transport string info/description.

unsigned flags

Transport flags (see pjsip_transport_flags_e).

SocketAddress localAddress

Local/bound address.

SocketAddress localName

Published address (or transport address name).

unsigned usageCount

Current number of objects currently referencing this transport.

class SipRxData

This structure describes an incoming SIP message.

It corresponds to the pjsip_rx_data structure in PJSIP library.

Public Functions

SipRxData()

Default constructor.

void fromPj(pjsip_rx_data & rdata)

Construct from PJSIP’s pjsip_rx_data.

Public Members

string info

A short info string describing the request, which normally contains the re-
quest method and its CSeq.

string wholeMsg

The whole message data as a string, containing both the header section and
message body section.

SocketAddress srcAddress

Source address of the message.

void * pjRxData

Pointer to original pjsip_rx_data.

Only valid when the struct is constructed from PJSIP’s pjsip_rx_data.

class SipTxData

This structure describes an outgoing SIP message.

It corresponds to the pjsip_tx_data structure in PJSIP library.

Public Functions

252 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

SipTxData()

Default constructor.

void fromPj(pjsip_tx_data & tdata)

Construct from PJSIP’s pjsip_tx_data.

Public Members

string info

A short info string describing the request, which normally contains the re-
quest method and its CSeq.

string wholeMsg

The whole message data as a string, containing both the header section and
message body section.

SocketAddress dstAddress

Destination address of the message.

void * pjTxData

Pointer to original pjsip_tx_data.

Only valid when the struct is constructed from PJSIP’s pjsip_tx_data.

class SipTransaction

This structure describes SIP transaction object.

It corresponds to the pjsip_transaction structure in PJSIP library.

Public Functions

SipTransaction()

Default constructor.

void fromPj(pjsip_transaction & tsx)

Construct from PJSIP’s pjsip_transaction.

Public Members

pjsip_role_e role

Role (UAS or UAC)

string method

The method.

int statusCode

Last status code seen.

string statusText

Last reason phrase.

12.8. siptypes.hpp 253

PJSUA2 Documentation, Release 1.0-alpha

pjsip_tsx_state_e state

State.

SipTxData lastTx

Msg kept for retrans.

void * pjTransaction

pjsip_transaction.

class TimerEvent

This structure describes timer event.

Public Members

TimerEntry entry

The timer entry.

class TsxStateEvent

This structure describes transaction state changed event.

Public Members

SipRxData rdata

The incoming message.

SipTxData tdata

The outgoing message.

TimerEntry timer

The timer.

pj_status_t status

Transport error status.

GenericData data

Generic data.

struct pj::TsxStateEvent::@2 src

Event source.

SipTransaction tsx

The transaction.

pjsip_tsx_state_e prevState

Previous state.

pjsip_event_id_e type

Type of event source:

class TxMsgEvent

This structure describes message transmission event.

Public Members

SipTxData tdata

254 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

The transmit data buffer.

class TxErrorEvent

This structure describes transmission error event.

Public Members

SipTxData tdata

The transmit data.

SipTransaction tsx

The transaction.

class RxMsgEvent

This structure describes message arrival event.

Public Members

SipRxData rdata

The receive data buffer.

class UserEvent

This structure describes user event.

Public Members

GenericData user1

User data 1.

GenericData user2

User data 2.

GenericData user3

User data 3.

GenericData user4

User data 4.

class SipEvent

This structure describe event descriptor to fully identify a SIP event.

It corresponds to the pjsip_event structure in PJSIP library.

Public Functions

SipEvent()

Default constructor.

void fromPj(const pjsip_event & ev)

Construct from PJSIP’s pjsip_event.

Public Members

pjsip_event_id_e type

12.8. siptypes.hpp 255

PJSUA2 Documentation, Release 1.0-alpha

The event type, can be any value of pjsip_event_id_e.

TimerEvent timer

Timer event.

TsxStateEvent tsxState

Transaction state has changed event.

TxMsgEvent txMsg

Message transmission event.

TxErrorEvent txError

Transmission error event.

RxMsgEvent rxMsg

Message arrival event.

UserEvent user

User event.

struct pj::SipEvent::@3 body

The event body, which fields depends on the event type.

void * pjEvent

Pointer to its original pjsip_event.

Only valid when the struct is constructed from PJSIP’s pjsip_event.

class SipMediaType

SIP media type containing type and subtype.

For example, for “application/sdp”, the type is “application” and the subtype is “sdp”.

Public Functions

void fromPj(const pjsip_media_type & prm)

Construct from PJSIP’s pjsip_media_type.

pjsip_media_type toPj()

Convert to PJSIP’s pjsip_media_type.

Public Members

string type

Media type.

string subType

Media subtype.

class SipHeader

Simple SIP header.

Public Functions

256 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

void fromPj(const pjsip_hdr *)

Initiaize from PJSIP header.

pjsip_generic_string_hdr & toPj()

Convert to PJSIP header.

Public Members

string hName

Header name.

string hValue

Header value.

Private Members

pjsip_generic_string_hdr pjHdr

Interal buffer for conversion to PJSIP header.

class SipMultipartPart

This describes each multipart part.

Public Functions

void fromPj(const pjsip_multipart_part & prm)

Initiaize from PJSIP’s pjsip_multipart_part.

pjsip_multipart_part & toPj()

Convert to PJSIP’s pjsip_multipart_part.

Public Members

SipHeaderVector headers

Optional headers to be put in this multipart part.

SipMediaType contentType

The MIME type of the body part of this multipart part.

string body

The body part of tthis multipart part.

Private Members

pjsip_multipart_part pjMpp

Interal buffer for conversion to PJSIP pjsip_multipart_part.

pjsip_msg_body pjMsgBody

class SipTxOption

12.8. siptypes.hpp 257

PJSUA2 Documentation, Release 1.0-alpha

Additional options when sending outgoing SIP message.

This corresponds to pjsua_msg_data structure in PJSIP library.

Public Functions

bool isEmpty()

Check if the options are empty.

If the options are set with empty values, there will be no additional informa-
tion sent with outgoing SIP message.

Return

True if the options are empty.

void fromPj(const pjsua_msg_data & prm)

Initiaize from PJSUA’s pjsua_msg_data.

void toPj(pjsua_msg_data & msg_data)

Convert to PJSUA’s pjsua_msg_data.

Public Members

string targetUri

Optional remote target URI (i.e.

Target header). If empty (“”), the target will be set to the remote URI (To
header). At the moment this field is only used when sending initial INVITE
and MESSAGE requests.

SipHeaderVector headers

Additional message headers to be included in the outgoing message.

string contentType

MIME type of the message body, if application specifies the messageBody
in this structure.

string msgBody

Optional message body to be added to the message, only when the message
doesn’t have a body.

SipMediaType multipartContentType

Content type of the multipart body.

If application wants to send multipart message bodies, it puts the parts in
multipartParts and set the content type in multipartContentType. If the mes-
sage already contains a body, the body will be added to the multipart bodies.

SipMultipartPartVector multipartParts

258 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

Array of multipart parts.

If application wants to send multipart message bodies, it puts the parts in
parts and set the content type in multipart_ctype. If the message already
contains a body, the body will be added to the multipart bodies.

class SendInstantMessageParam

This structure contains parameters for sending instance message methods, e.g:
Buddy::sendInstantMessage(), Call:sendInstantMessage().

Public Functions

SendInstantMessageParam()

Default constructor initializes with zero/empty values.

Public Members

string contentType

MIME type.

Default is “text/plain”.

string content

The message content.

SipTxOption txOption

List of headers etc to be included in outgoing request.

Token userData

User data, which will be given back when the IM callback is called.

class SendTypingIndicationParam

This structure contains parameters for sending typing indication methods, e.g:
Buddy::sendTypingIndication(), Call:sendTypingIndication().

Public Functions

SendTypingIndicationParam()

Default constructor initializes with zero/empty values.

Public Members

bool isTyping

True to indicate to remote that local person is currently typing an IM.

SipTxOption txOption

List of headers etc to be included in outgoing request.

12.9 types.hpp

PJSUA2 Base Types.

Defines

PJSUA2_RAISE_ERROR(status)

Raise Error exception.

12.9. types.hpp 259

PJSUA2 Documentation, Release 1.0-alpha

PJSUA2_RAISE_ERROR2(status, op)

Raise Error exception.

PJSUA2_RAISE_ERROR3(status, op, txt)

Raise Error exception.

PJSUA2_CHECK_RAISE_ERROR2(status, op)

Raise Error exception if the expression fails.

PJSUA2_CHECK_RAISE_ERROR(status)

Raise Error exception if the status fails.

PJSUA2_CHECK_EXPR(expr)

Raise Error exception if the expression fails.

namespace pj

PJSUA2 API is inside pj namespace.

Typedefs

typedef std::vector< std::string > StringVector

Array of strings.

typedef std::vector< int > IntVector

Array of integers.

typedef void * Token

Type of token, i.e.

arbitrary application user data

typedef string SocketAddress

Socket address, encoded as string.

The socket address contains host and port number in “host[:port]” format. The host
part may contain hostname, domain name, IPv4 or IPv6 address. For IPv6 address,
the address will be enclosed with square brackets, e.g. “[::1]:5060”.

typedef int TransportId

Transport ID is an integer.

typedef void * TransportHandle

Transport handle, corresponds to pjsip_transport instance.

typedef void * TimerEntry

Timer entry, corresponds to pj_timer_entry.

typedef void * GenericData

Generic data.

Enums

Anonymous enum

Constants.

Values:

260 Chapter 12. PJSUA2 API Reference Manuals

PJSUA2 Documentation, Release 1.0-alpha

• INVALID_ID = -1 - Invalid ID, equal to PJSUA_INVALID_ID.

• SUCCESS = 0 - Success, equal to PJ_SUCCESS.

class Error

This structure contains information about an error that is thrown as an exception.

Public Functions

string info(bool multi_line = false)

Build error string.

Error()

Default constructor.

Error(pj_status_t prm_status, const string & prm_title, const string & prm_reason,
const string & prm_src_file, int prm_src_line)

Construct an Error instance from the specified parameters.

If prm_reason is empty, it will be filled with the error description for the
status code.

Public Members

pj_status_t status

The error code.

string title

The PJSUA API operation that throws the error.

string reason

The error message.

string srcFile

The PJSUA source file that throws the error.

int srcLine

The line number of PJSUA source file that throws the error.

class Version

Version information.

Public Members

int major

Major number.

int minor

Minor number.

int rev

12.9. types.hpp 261

PJSUA2 Documentation, Release 1.0-alpha

Additional revision number.

string suffix

Version suffix (e.g.

“-svn”)

string full

The full version info (e.g.

“2.1.0-svn”)

unsigned numeric

PJLIB version number as three bytes with the following format: 0xMMI-
IRR00, where MM: major number, II: minor number, RR: revision number,
00: always zero for now.

class TimeVal

Representation of time value.

Public Functions

void fromPj(const pj_time_val & prm)

Convert from pjsip.

Public Members

long sec

The seconds part of the time.

long msec

The miliseconds fraction of the time.

12.10 config.hpp

PJSUA2 Base Agent Operation.

Defines

PJSUA2_ERROR_HAS_EXTRA_INFO

Specify if the Error exception info should contain operation and source file information.

262 Chapter 12. PJSUA2 API Reference Manuals

CHAPTER

THIRTEEN

APPENDIX: GENERATING THIS DOCUMENTATION

13.1 Requirements

This documentation is created with Sphinx and Breathe. Here are the required tools:

1. Doxygen is required. Install it for your platform.

2. The easiest way to install all the tools is with Python Package Index (PyPI). Just run this and it will install
Sphinx, Breathe, and all the required tools if they are not installed:

$ sudo pip install breathe

3. Otherwise if PyPI is not available, consult Sphinx and Breathe sites for installation instructions and you may
need to install these manually:

• Sphinx

• Breathe

• docutils

• Pygments

13.2 Rendering The Documentation

The main source of the documentation is currently the ‘’‘Trac’‘’ pages at https://trac.pjsip.org/repos/wiki/pjsip-
doc/index. The copies in SVN are just copies for backup.

To render the documentation as HTML in _build/html directory:

$ cd $PJDIR/doc/pjsip-book
$ python fetch_trac.py
$ make

To build PDF, run:

$ make latexpdf

13.3 How to Use Integrate Book with Doxygen

Quick sample:

263

http://sphinx-doc.org
http://michaeljones.github.io/breathe/index.html
http://www.stack.nl/~dimitri/doxygen/download.html#srcbin
http://pypi.python.org
http://sphinx-doc.org
http://michaeljones.github.io/breathe/index.html
https://trac.pjsip.org/repos/wiki/pjsip-doc/index
https://trac.pjsip.org/repos/wiki/pjsip-doc/index

PJSUA2 Documentation, Release 1.0-alpha

will be rendered like this:
+++++++++++++++++++++++++++

This is how to quote a code with syntax coloring:

.. code-block:: c++

pj::AudioMediaPlayer *player = new AudioMediaPlayer;
player->createPlayer("announcement.wav");

There are many ways to refer a symbol:

* A method: :cpp:func:‘pj::AudioMediaPlayer::createPlayer()‘

* A method with alternate display: :cpp:func:‘a method <pj::AudioMediaPlayer::createPlayer()>‘

* A class :cpp:class:‘pj::AudioMediaPlayer‘

* A class with alternate display: :cpp:class:‘a class <pj::AudioMediaPlayer>‘

For that links to work, we need to display the link target declaration (a class or method)
somewhere in the doc, like this:

.. doxygenclass:: pj::AudioMediaPlayer
:path: xml
:members:

Alternatively we can display a single method declaration like this:

.. doxygenfunction:: pj::AudioMediaPlayer::createPlayer()
:path: xml
:no-link:

We can also display class declaration with specific members.

For more info see ‘Breathe documentation <http://michaeljones.github.io/breathe/domains.html>‘_

13.3.1 will be rendered like this:

This is how to quote a code with syntax coloring:

pj::AudioMediaPlayer *player = new AudioMediaPlayer;
player->createPlayer("announcement.wav");

There are many ways to refer a symbol:

• A method: pj::AudioMediaPlayer::createPlayer()

• A method with alternate display: a method

• A class pj::AudioMediaPlayer

• A class with alternate display: a class

For that links to work, we need to display the link target declaration (a class or method) somewhere in the doc, like
this:

class pj::AudioMediaPlayer

Audio Media Player.

Public Functions

264 Chapter 13. Appendix: Generating This Documentation

PJSUA2 Documentation, Release 1.0-alpha

AudioMediaPlayer()

Constructor.

void createPlayer(const string & file_name, unsigned options = 0)

Create a file player, and automatically add this player to the conference
bridge.

Parameters

• file_name - The filename to be played. Currently only WAV files
are supported, and the WAV file MUST be formatted as 16bit PCM
mono/single channel (any clock rate is supported).

• options - Optional option flag. Application may specify PJME-
DIA_FILE_NO_LOOP to prevent playback loop.

void createPlaylist(const StringVector & file_names, const string & label = “”,
unsigned options = 0)

Create a file playlist media port, and automatically add the port to the con-
ference bridge.

Parameters

• file_names - Array of file names to be added to the play list. Note
that the files must have the same clock rate, number of channels, and
number of bits per sample.

• label - Optional label to be set for the media port.

• options - Optional option flag. Application may specify PJME-
DIA_FILE_NO_LOOP to prevent looping.

void setPos(pj_uint32_t samples)

Set playback position.

This operation is not valid for playlist.

Parameters

• samples - The desired playback position, in samples.

~AudioMediaPlayer()

Virtual destructor.

Public Static Functions

AudioMediaPlayer * typecastFromAudioMedia(AudioMedia * media)

13.3. How to Use Integrate Book with Doxygen 265

PJSUA2 Documentation, Release 1.0-alpha

Typecast from base class AudioMedia.

This is useful for application written in language that does not support down-
casting such as Python.

Return

The object as AudioMediaPlayer instance

Parameters

• media - The object to be downcasted

Alternatively we can display a single method declaration like this:

void createPlayer(const string & file_name, unsigned options = 0)

Create a file player, and automatically add this player to the conference bridge.

Parameters

• file_name - The filename to be played. Currently only WAV files are supported,
and the WAV file MUST be formatted as 16bit PCM mono/single channel (any clock
rate is supported).

• options - Optional option flag. Application may specify PJME-
DIA_FILE_NO_LOOP to prevent playback loop.

We can also display class declaration with specific members.

For more info see Breathe documentation

266 Chapter 13. Appendix: Generating This Documentation

http://michaeljones.github.io/breathe/domains.html

CHAPTER

FOURTEEN

INDICES AND TABLES

• genindex

• modindex

• search

267

	Introduction
	Getting Started with PJSIP
	PJSIP Info and Documentation

	Development Guidelines and Considerations
	Development Guidelines
	Platform Consideration
	Which API to Use
	Network and Infrastructure Considerations
	Sound Device

	PJSUA2-High Level API
	PJSUA2 Main Classes
	General Concepts
	Building PJSUA2
	Building Python and Java SWIG Modules
	Using in C++ Application
	Using in Python Application
	Using in Java Application

	Endpoint
	Instantiating the Endpoint
	Creating the Library
	Initializing the Library and Configuring the Settings
	Creating One or More Transports
	Starting the Library
	Shutting Down the Library
	Class Reference

	Accounts
	Subclassing the Account class
	Creating Userless Accounts
	Creating Account
	Account Configurations
	Account Operations
	Class Reference

	Media
	The Audio Conference Bridge
	Audio Device Management
	Class Reference

	Calls
	Subclassing the Call Class
	Making Outgoing Calls
	Receiving Incoming Calls
	Call Properties
	Call Disconnection
	Working with Call's Audio Media
	Call Operations
	Instant Messaging(IM)
	Class Reference

	Buddy (Presence)
	Subclassing the Buddy class
	Subscribing to Buddy's Presence Status
	Responding to Presence Subscription Request
	Changing Account's Presence Status
	Instant Messaging(IM)
	Class Reference

	PJSUA2 Sample Applications
	Sample Apps
	Miscellaneous

	Media Quality
	Audio Quality
	Video Quality

	Network Problems
	IP Address Change
	Blocked/Filtered Network

	PJSUA2 API Reference Manuals
	endpoint.hpp
	account.hpp
	media.hpp
	call.hpp
	presence.hpp
	persistent.hpp
	json.hpp
	siptypes.hpp
	types.hpp
	config.hpp

	Appendix: Generating This Documentation
	Requirements
	Rendering The Documentation
	How to Use Integrate Book with Doxygen

	Indices and tables

